一元函数拟合:
"""拟合任意分布"""
from sklearn.metrics import r2_score
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
import numpy as np
# 用来拟合的方程
def function(x, a, b, c):
y = a * np.exp(-b * x) + c
return y
# 生成x,y
def get_xy():
xdata: np.ndarray = np.linspace(0, 4, 50) # x值
y = function(xdata, 2.5, 1.3, 0.5)
rng = np.random.default_rng()
y_noise = 0.2 * rng.normal(size=xdata.size)
ydata: np.ndarray = y + y_noise # 拟合的数据 y
return xdata, ydata
if __name__ == '__main__':
x_value, y_value = get_xy()
# 第一个,拟合的函数,第二个x,第三个y
# popt: 求得的最优参数
popt, pcov = curve_fit(function, x_value, y_value)
# 这个写法是加一个限制:0 <= a <= 3, 0 <= b <= 1 and 0 <= c <= 0.5
# popt_2, pcov_2 = curve_fit(function, x_value, y_value, bounds=([0, 0, 0.5], [3., 1., 1]))
y_pred = function(x_value, *popt) # 预测结果
r2 = r2_score(y_value, y_pred) # 输出R2
print("参数: {}, r2: {:0.4f}".format(np.round(popt,4),r2))
# 绘图
plt.plot(x_value, y_value, 'b-', label='data')
plt.plot(x_value, function(x_value, *popt))
plt.legend(['y', 'y_pred']) # 绘制图例
plt.show()
D:\python.exe "D:/02.py"
参数: [2.7121 1.5809 0.5202], r2: 0.9273
Process finished with exit code 0
二元函数拟合:
"""拟合任意分布"""
from sklearn.metrics import r2_score
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
import numpy as np
# 用来拟合的方程
def function(x, a, b, c):
y = a*x[0] + b*x[1] + c
return y
# 生成x,y
def get_xy():
xdata0 = np.linspace(0, 4, 50) # x值
xdata1 = np.linspace(0, 4, 50)
y = function((xdata0,xdata1), 2.5, 1.3, 0.5)
rng = np.random.default_rng()
y_noise = 0.2 * rng.normal(size=xdata0.size)
ydata = y + y_noise # 拟合的数据 y
return (xdata0,xdata1), ydata
if __name__ == '__main__':
x_value, y_value = get_xy()
# 第一个,拟合的函数,第二个x,第三个y
# popt: 求得的最优参数
popt, pcov = curve_fit(function, x_value, y_value)
# 这个写法是加一个限制:0 <= a <= 3, 0 <= b <= 1 and 0 <= c <= 0.5
# popt_2, pcov_2 = curve_fit(function, x_value, y_value, bounds=([0, 0, 0.5], [3., 1., 1]))
y_pred = function(x_value, *popt) # 预测结果
r2 = r2_score(y_value, y_pred) # 输出R2
print("参数: {}, r2: {:0.4f}".format(np.round(popt,4),r2))
# 绘图
plt.plot(np.linspace(1,len(x_value[0]),50), y_value)
plt.plot(np.linspace(1,len(x_value[0]),50), function(x_value, *popt))
plt.legend(['y', 'y_pred']) # 绘制图例
plt.show()