- 算法在各领域的广泛应用:100 个实例全解析
软件职业规划
AI&模型算法
一、互联网与信息技术领域搜索引擎算法:如谷歌的PageRank算法,用于根据网页的重要性和相关性对搜索结果进行排序,帮助用户快速找到所需信息。推荐系统算法:例如亚马逊和Netflix使用的协同过滤算法。根据用户的历史行为(购买、观看记录等)和其他相似用户的偏好,为用户推荐可能感兴趣的产品或内容。社交网络分析算法:用于分析社交网络中的用户关系,如Facebook通过算法发现用户的好友推荐、社区划分等
- Python爬虫教程:如何通过接口批量下载视频封面(FFmpeg技术实现)
Python爬虫项目
python爬虫开发语言数据库数据分析scrapyselenium
引言随着在线视频平台的蓬勃发展,视频封面作为视频内容的预览图,一直以来都是观众对视频的第一印象。在爬取视频资源时,很多开发者和研究者往往只关注视频本身,而忽略了视频封面。实际上,视频封面不仅能提供重要的信息(例如视频标题、主题或情感等),而且它们也能作为数据集中的重要属性,用于视频分类、推荐系统等应用。在这篇博客中,我们将深入探讨如何使用Python通过接口批量下载视频封面,利用FFmpeg等技术
- Python爬虫实战:抓取电子图书平台图书信息与下载数据
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言网络爬虫信息可视化
前言电子图书平台汇集了海量的图书资源和丰富的信息,抓取这些数据可用于研究图书销售趋势、阅读偏好分析,甚至为书籍推荐系统提供数据支持。本文将详细介绍如何使用Python爬虫技术抓取电子图书平台的图书信息和下载数据。我们会涵盖从需求分析到代码实现的完整流程,探讨如何应对复杂的反爬机制,并使用最新的技术工具优化抓取过程。目录前言一、需求分析与目标1.1抓取目标1.2难点与挑战二、技术选型与工具2.1使用
- 从零开始搭建搜索推荐系统(五十四)多路召回之万剑归宗
hanyi_
搜索推荐javajava搜索系统
聊的不止技术。跟着小帅写代码,还原和技术大牛一对一真实对话,剖析真实项目筑成的一砖一瓦,了解最新最及时的资讯信息,还可以学到日常撩妹小技巧哦,让我们开始探索主人公小帅的职场生涯吧!(PS:本系列文章以幽默风趣风格为主,较真侠和杠精请绕道~)一、奶茶引发的血案(会议室里,行服小姐姐把笔记本往桌上一拍,屏幕上是密密麻麻的搜索日志)行服姐姐:"小帅!你自己看看!用户搜'朝阳区低糖芝士草莓冰沙',你家系统
- 机器学习模型-从线性回归到神经网络
Earth explosion
机器学习线性回归神经网络
在当今的数据驱动世界中,机器学习模型是许多应用程序的核心。无论是推荐系统、图像识别,还是自动驾驶汽车,机器学习技术都在背后发挥着重要作用。在这篇文章中,我们将探索几种基础的机器学习模型,并了解它们的基本原理和应用场景。1.线性回归基本原理线性回归是最简单的机器学习模型之一。它旨在找到一个最佳拟合线来预测目标变量(通常是连续值)。线性回归假设输入变量和输出变量之间存在线性关系,其数学表达式为:[y=
- 机器学习入门指南:从 TensorFlow 到 PyTorch
6v6-博客
机器学习tensorflowpytorch
机器学习入门指南:从TensorFlow到PyTorch机器学习(MachineLearning)是人工智能的核心领域之一,近年来在图像识别、自然语言处理、推荐系统等领域取得了巨大进展。本文将从基础概念入手,介绍机器学习的核心知识,并带你快速上手两大主流框架:TensorFlow和PyTorch。机器学习基础什么是机器学习?机器学习是一种通过数据训练模型,使计算机能够自动学习和改进的技术。它主要分
- H800实战应用深度解析endofsentence
智能计算研究中心
其他
内容概要H800作为新一代计算架构的核心组件,其设计理念聚焦于高性能计算与人工智能场景的深度融合。通过模块化异构计算架构,H800实现了计算密度与能效比的突破性提升。下表展示了H800在不同场景下的性能表现对比:场景类型训练速度提升推理延迟降低能效比提升自然语言处理35%22%40%计算机视觉28%18%33%推荐系统41%29%37%资深系统架构师指出:"H800的异构计算架构在模型并行处理方面
- LWC-KD:图结构感知的推荐系统增量学习对比知识蒸馏
宇直不会放弃
GKD-Middlelayer人工智能pythonchatgptgpu算力深度学习机器学习神经网络
LWC-KD:图结构感知的推荐系统增量学习对比知识蒸馏《GraphStructureAwareContrastiveKnowledgeDistillationforIncrementalLearninginRecommenderSystems》2021作者是YueningWang、YingxueZhang和MarkCoates论文地址:https://dl.acm.org/doi/10.1145/
- 基于大数据架构的就业岗位推荐系统的设计与实现【java或python】—计算机毕业设计源码+LW文档
qq_375279829
大数据架构python课程设计算法
摘要随着互联网技术的迅猛发展和大数据时代的到来,就业市场日益复杂多变,求职者与招聘方之间的信息不对称问题愈发突出。为解决这一难题,本文设计并实现了一个基于大数据架构的就业岗位推荐系统。该系统通过收集、整合并分析大量求职者简历信息、企业招聘信息以及市场动态数据,运用先进的机器学习算法,为求职者提供个性化的岗位推荐服务,同时帮助企业快速定位到合适的候选人。本文将从系统设计的背景与意义、技术基础、需求分
- 向量数据库简介
openwin_top
python编程示例系列python编程示例系列二数据库
向量数据库(VectorDatabase)是一种专门用于存储和查询向量数据的数据库系统。向量数据库通常使用高效的向量索引技术,支持基于向量相似度的查询和检索,可以应用于图像搜索、自然语言处理、推荐系统、机器学习等领域。与传统的关系型数据库不同,向量数据库通常使用基于向量的数据模型,将向量作为数据的核心表示形式。向量数据库可以存储和处理大量的向量数据,支持高效的向量相似度计算和查询。常见的向量索引技
- 开源向量数据库介绍说明
❀͜͡傀儡师
开源数据库
开源向量数据库Milvus特点:分布式、高性能,支持亿级向量检索。支持的数据类型:文本、图像、音频、视频等。使用场景:推荐系统、语义搜索、图像搜索。数据存储后端:支持多种后端,如SQLite、MySQL、PostgreSQL。Qdrant特点:高可用性、易用性,支持实时更新和过滤。编程接口:支持REST和gRPC。使用场景:个性化推荐、自然语言搜索、商品搜索。Weaviate特点:基于GraphQ
- 计算机毕业设计JAVA人职匹配推荐系统mybatis+源码+调试部署+系统+数据库+lw
诺诺网络
javamybatis开发语言
计算机毕业设计JAVA人职匹配推荐系统mybatis+源码+调试部署+系统+数据库+lw计算机毕业设计JAVA人职匹配推荐系统mybatis+源码+调试部署+系统+数据库+lw本源码技术栈:项目架构:B/S架构开发语言:Java语言开发软件:ideaeclipse前端技术:Layui、HTML、CSS、JS、JQuery等技术后端技术:JAVA运行环境:Win10、JDK1.8数据库:MySQL5
- Python构建基于协同过滤的推荐系统:从理论到实践
清水白石008
pythonPython题库python开发语言
构建基于协同过滤的推荐系统:从理论到实践推荐系统在现代应用中无处不在,从电商平台的商品推荐到流媒体服务的内容推荐,推荐系统极大地提升了用户体验。本文将详细介绍如何使用Python构建一个基于协同过滤算法的推荐系统,内容涵盖理论基础、数据处理、算法实现以及实际应用。一、推荐系统概述推荐系统主要分为三类:基于内容的推荐、基于协同过滤的推荐和混合推荐系统。本文重点介绍基于协同过滤的推荐系统。协同过滤(C
- 知识图谱与金融——基于知识图谱的风险监控与决策支持
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介知识图谱(KG)是一种用来表示大量互相关联数据的多维网络结构,它通过三元组(subject-predicate-object)的方式来表述实体之间的关系。它经常被用在文本分析、数据挖掘、推荐系统等领域。而随着金融行业对海量信息数据的需求越来越高,知识图谱技术也越来越受到重视。实际上,知识图谱已经成为构建和处理金融知识的重要工具之一。本文将探讨知识图谱在金融中的应
- 专业 英语
程序员爱德华
英语专业英语
文章目录一、计算机1.计算机基础(1)计算机组成原理(2)计算机网络(3)数据库(4)编译原理(5)离散数学2.软件开发(1)编程词汇(2)开发术语(3)Linux(4)软件3.就业领域(1)职场(2)芯片(3)自动驾驶(4)嵌入式硬件4.深度学习(1)论文(2)深度学习DL(3)计算机视觉CV(4)自然语言处理NLP(5)推荐系统(6)计算机图形学二、数学三、机械、材料四、医药五、英美计量单位一
- 跨领域算法安全优化与实践路径
智能计算研究中心
其他
内容概要在算法技术加速渗透金融、医疗、自动驾驶等关键领域的背景下,跨领域算法的安全性与可落地性成为核心挑战。本书从联邦学习的隐私保护架构切入,探讨如何通过可解释性算法增强模型透明度,并引入量子计算与边缘计算的协同优化框架,构建兼顾效率与安全的技术范式。值得注意的是,医疗影像分析中的对抗攻击防御机制与生成对抗网络驱动的推荐系统创新,揭示了算法动态演进中的风险控制逻辑。技术整合不应局限于单一场景优化,
- Django 中的算法应用与实现
岱宗夫up
教学sqlite数据库pythondjangoopencv
Django中的算法应用与实现在Django开发中,算法的应用可以极大地扩展Web应用的功能和性能。从简单的数据处理到复杂的机器学习模型,Django都可以作为一个强大的后端框架来支持这些算法的实现。本文将介绍几种常见的算法及其在Django中的使用方法。1\.协同过滤算法1.1算法简介协同过滤是一种常用的推荐系统算法,通过分析用户的行为数据(如评分、浏览历史等),为用户推荐他们可能感兴趣的内容。
- 大模型不确定性量化与提示词校准
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
大模型不确定性量化与提示词校准关键词大模型不确定性量化提示词校准自然语言处理计算机视觉推荐系统摘要本文旨在探讨大模型不确定性量化与提示词校准这一前沿技术。首先,我们将介绍大模型不确定性的背景及其重要性,然后深入探讨不确定性量化的原理和方法,以及提示词校准在其中的作用。通过具体案例分析,我们将展示这些技术在自然语言处理、计算机视觉和推荐系统等领域的应用。最后,我们将讨论实现大模型不确定性量化与提示词
- 新闻推荐系统:Spring Boot框架详解
2402_85758936
springboot后端java
2相关技术2.1MYSQL数据库MySQL是一个真正的多用户、多线程SQL数据库服务器。是基于SQL的客户/服务器模式的关系数据库管理系统,它的有点有有功能强大、使用简单、管理方便、安全可靠性高、运行速度快、多线程、跨平台性、完全网络化、稳定性等,非常适用于Web站点或者其他应用软件的数据库后端的开发工作。此外,用户可利用许多语言编写访问MySQL数据库的程序。作为开放源代码运动的产物之一,MyS
- 搜广推校招面经三十六
Y1nhl
搜广推面经机器学习人工智能算法python深度学习pytorch推荐算法
快手推荐算法一、有10亿个数据量如何快速做召回在推荐系统的召回阶段,面对海量数据(如10亿条记录),需要快速筛选出与目标用户相关的候选物品集合。由于数据规模巨大,直接对所有数据进行计算是不现实的,因此需要设计高效的召回策略。1.1.核心挑战数据规模大:10亿级别的数据无法直接加载到内存中。实时性要求高:召回过程通常需要在毫秒级完成。稀疏性问题:用户行为数据通常是稀疏的,导致相似性计算复杂度增加。多
- 图数据库Neo4j面试内容整理-图遍历和最短路径
不务正业的猿
面试Neo4j数据库neo4j网络面试职场和发展图数据库
图遍历和最短路径是图数据库中两个非常重要的概念,尤其是在图数据结构中,它们是解决许多问题(如社交网络分析、推荐系统、网络分析等)的核心算法。Neo4j提供了强大的图遍历和最短路径查询能力,帮助用户有效地从图中提取信息。1.图遍历(GraphTraversal)
- 《DataWorks:为人工智能算法筑牢高质量数据根基》
人工智能深度学习
在当今数字化时代,人工智能(AI)技术的迅猛发展深刻地改变着各个行业的面貌。从智能推荐系统到医疗影像诊断,从自动驾驶到自然语言处理,AI正以前所未有的速度渗透到我们生活和工作的方方面面。而在这一系列AI应用的背后,高质量的训练数据是其能够发挥强大效能的关键所在。就如同巧妇难为无米之炊,没有优质的数据,再先进的AI算法也难以施展拳脚。阿里巴巴的DataWorks,作为一款强大的大数据开发治理平台,在
- 2025年具有百度特色的软件测试面试题
噔噔噔噔@
软件测试基础及工具分享程序人生软件测试面试题专栏测试工具经验分享自动化
百度业务场景如何测试一个高并发的搜索系统(如百度搜索)?如何测试一个在线地图服务(如百度地图)?如何测试一个大型推荐系统(如百度推荐)的性能?百度技术栈你对百度的PaddlePaddle框架有了解吗?如何测试基于PaddlePaddle的服务?如何测试百度云的API服务?你对百度的DevOps实践有什么了解?
- 《基于Django和ElasticSearch的学术论文搜索推荐系统的设计与实现》开题报告
Python数据分析与机器学习
毕业论文/研究报告elasticsearch大数据搜索引擎课程设计pythondjango开发语言
目录一、选题的背景和意义(一)选题背景(二)选题意义2.1.提升科研效率2.2促进学术创新2.3优化资源配置二、选题的国内外现状与总结(一)国内现状(二)国外现状(三)总结三、选题的主要内容和拟解决关键问题(一)主要内容1.数据库设计与实现2.搜索功能实现3.推荐功能实现4.用户管理与交互功能实现(二)拟解决关键问题1.数据质量与整合难题解决措施:2.搜索精准度与性能优化解决措施:四、选题的设计方
- 微信小程序毕业设计大全
QQ1305637939
小程序毕业设计小程序答辩javaidea
微信小程序程序列表:微信小程序健身房课程预约系统6638微信小程序投票系统6640微信小程序小说阅读推荐系统6641微信小程序垃圾分类识别系统(语音识别,拍照识别)qt-93982微信小程序网上书店qt-93982微信小程序在线购物系统qt-93982微信小程序课堂签到系统qtail-93982微信小程序人脸识别图书馆座位预约系统qt-93982微信小程序二手物品交易系统qt-93982微信小程序
- 基于Python豆瓣电影评论的数据处理与分析
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于Python豆瓣电影评论的数据处理与分析作者:禅与计算机程序设计艺术1.背景介绍1.1豆瓣电影评论数据的价值1.1.1反映观众观影偏好1.1.2影响电影市场走向1.1.3为推荐系统提供数据支持1.2Python在数据处理与分析中的优势1.2.1丰富的数据处理库1.2.2强大的数据分析和可视化能力1.2.3简洁高效的语法1.3本文的研究目的和意义1.3.1探索豆瓣电影评论数据的特点1.3.2实践
- 融合多源高校画像数据与协同过滤算法的高考择校推荐系统[Java]—计算机毕业设计源码+LW文档
qq_375279829
高考javaspringbootjavascriptvue.jsspring
摘要随着信息技术的飞速发展和教育数据的日益丰富,高考择校推荐系统已成为帮助学生和家长做出明智选择的重要工具。本文介绍了一种基于SpringBoot的融合多源高校画像数据与协同过滤算法的高考择校推荐系统。该系统通过整合高校的多源画像数据,如地理位置、学科实力、师资力量、就业情况等,结合协同过滤算法,为学生提供个性化的高校推荐。本文详细阐述了系统的设计与实现过程,包括技术选型、需求分析、系统设计、功能
- python 推荐算法库_[译] 详解个性化推荐五大最常用算法
weixin_39612733
python推荐算法库
允中若朴编译自Stats&Bots量子位出品|公众号QbitAI推荐系统,是当今互联网背后的无名英雄。我们在某宝首页看见的商品,某条上读到的新闻,甚至在各种地方看见的广告,都有赖于它。昨天,一个名为Stats&Bots的博客详解了构建推荐系统的五种方法。量子位编译如下:现在,许多公司都在用大数据来向用户进行相关推荐,驱动收入增长。推荐算法有很多种,数据科学家需要根据业务的限制和要求选择最好的算法。
- Python智能推荐系统与个性化电商
master_chenchengg
pythonpython办公效率python开发IT
Python智能推荐系统与个性化电商探索宝藏:揭开推荐系统的神秘面纱数据炼金术:挖掘用户行为背后的黄金智能导购员:为每位顾客定制专属购物体验实时响应大师:打造即时反馈的动态推荐社交网络效应:借助朋友的力量扩大影响力反馈循环艺术家:持续改进与优化用户体验未来展望:迎接智能化零售的新时代探索宝藏:揭开推荐系统的神秘面纱在电子商务的世界里,推荐系统就像是一个藏宝图,它帮助商家找到那些隐藏在海量商品中的“
- Python实现个性化推荐二
Ninina1992
python人工智能开发工具
基于内容的推荐引擎是怎么工作的基于内容的推荐系统,正如你的朋友和同事预期的那样,会考虑商品的实际属性,比如商品描述,商品名,价格等等。如果你以前从没接触过推荐系统,然后现在有人拿枪指着你的头,强迫你在三十秒之内描述出来,你可能会描述这样一个基于内容的系统:呃,呃,我可能会给你看一大堆来自同一个厂家,并且拥有类似的说明的产品。你正在利用商品本身的属性来推荐类似的商品。这样做非常合理,因为这就是我们在
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓