如下,x是输入张量,dim指定维度,max可以替换成min
import torch
if __name__ == '__main__':
x = torch.randn([1, 3, 4, 4]).cuda()
mask = (x == x.max(dim=1, keepdim=True)[0]).to(dtype=torch.int32)
result = torch.mul(mask, x)
print(x)
print(mask)
print(result)
输出效果:
tensor([[[[-0.8807, 0.1029, 0.0184, 1.2695],
[-0.0934, 1.0650, -0.2927, 0.0049],
[ 0.2338, -1.8663, 1.2763, 0.7248],
[-1.5138, 0.6834, 0.1463, 0.0650]],
[[ 0.5020, 1.6078, -0.0104, 1.2042],
[ 1.8859, -0.4682, -0.1177, 0.5197],
[ 1.7649, 0.4585, 0.6002, 0.3350],
[-1.1384, -0.0325, 0.8490, 0.6080]],
[[-0.5618, 0.5388, -0.0572, -0.7240],
[-0.3458, 1.3494, -0.0603, -1.1562],
[-0.3652, 1.1885, 1.6293, 0.4134],
[ 1.3009, 1.2027, -0.8711, 1.3321]]]], device='cuda:0')
tensor([[[[0, 0, 1, 1],
[0, 0, 0, 0],
[0, 0, 0, 1],
[0, 0, 0, 0]],
[[1, 1, 0, 0],
[1, 0, 0, 1],
[1, 0, 0, 0],
[0, 0, 1, 0]],
[[0, 0, 0, 0],
[0, 1, 1, 0],
[0, 1, 1, 0],
[1, 1, 0, 1]]]], device='cuda:0', dtype=torch.int32)
tensor([[[[-0.0000, 0.0000, 0.0184, 1.2695],
[-0.0000, 0.0000, -0.0000, 0.0000],
[ 0.0000, -0.0000, 0.0000, 0.7248],
[-0.0000, 0.0000, 0.0000, 0.0000]],
[[ 0.5020, 1.6078, -0.0000, 0.0000],
[ 1.8859, -0.0000, -0.0000, 0.5197],
[ 1.7649, 0.0000, 0.0000, 0.0000],
[-0.0000, -0.0000, 0.8490, 0.0000]],
[[-0.0000, 0.0000, -0.0000, -0.0000],
[-0.0000, 1.3494, -0.0603, -0.0000],
[-0.0000, 1.1885, 1.6293, 0.0000],
[ 1.3009, 1.2027, -0.0000, 1.3321]]]], device='cuda:0')
Process finished with exit code 0
参考链接:
https://discuss.pytorch.org/t/keep-the-max-value-of-the-array-and-0-the-others/14480/8