Reeds-Shepp曲线是一种路线规划方法。假设车辆能以固定的半径转向,且车辆能够前进和后退,那么Reeds-Shepp曲线就是车辆在上述条件下从起点到终点的最短路径。该曲线不仅能保证车辆能够到达终点,而且能保证车辆的角度能在终点到达预期角度,比如在垂直泊车的过程中,开始车辆平行于道路,终点要求车辆垂直于道路,这就对车辆的终点位置和终点角度都提出了要求。
本文图片主要来自:
http://planning.cs.uiuc.edu/node822.htmlplanning.cs.uiuc.edu首先看一下车辆模型,上图为车辆模型示意图。
该运动方在低速情况下运动轨迹为一个圆,方向盘转角
下表是Reeds-Shepp曲线的基本操作方式,一共有48种操作模式,归为9种Base word,可详见OPTIMAL PATHS FOR A CAR THAT GOES BOTH FORWARDS AND BACKWARDS。但是在编程求解我们不需要每一种都分开求解,其中他们之间的对称性可以帮助我们减少工作量。例如求解到终点
例如下面的代码是求解
% formula 8.1
function [isok,t,u,v] = LpSpLp(x,y,phi)
[t,u] = cart2pol(x-sin(phi),y-1+cos(phi));
if t >= 0
v = mod2pi(phi-t);
if v >= 0
isok = true;
return
end
end
isok = false;
t = 0;
u = 0;
v = 0;
end
下面我列出文中用于求解路径的主要公式。
function v = mod2pi(x)
v = rem(x,2*pi);
if v < -pi
v = v+2*pi;
elseif v > pi
v = v-2*pi;
end
end
function [tau,omega] = tauOmega(u,v,xi,eta,phi)
delta = mod2pi(u-v);
A = sin(u)-sin(delta);
B = cos(u)-cos(delta)-1;
t1 = atan2(eta*A-xi*B,xi*A+eta*B);
t2 = 2*(cos(delta)-cos(v)-cos(u))+3;
if t2 < 0
tau = mod2pi(t1+pi);
else
tau = mod2pi(t1);
end
omega = mod2pi(tau-u+v-phi);
end
% formula 8.2
function [isok,t,u,v] = LpSpRp(x,y,phi)
[t1,u1] = cart2pol(x+sin(phi),y-1-cos(phi));
if u1^2 >= 4
u = sqrt(u1^2-4);
theta = atan2(2,u);
t = mod2pi(t1+theta);
v = mod2pi(t-phi);
if t >= 0 && v >= 0
isok = true;
return
end
end
isok = false;
t = 0;
u = 0;
v = 0;
end
% formula 8.3/8.4
function [isok,t,u,v] = LpRmL(x,y,phi)
xi = x-sin(phi);
eta = y-1+cos(phi);
[theta,u1] = cart2pol(xi,eta);
if u1 <= 4
u = -2*asin(u1/4);
t = mod2pi(theta+u/2+pi);
v = mod2pi(phi-t+u);
if t >= 0 && u <= 0
isok = true;
return
end
end
isok = false;
t = 0;
u = 0;
v = 0;
end
% formula 8.7
function [isok,t,u,v] = LpRupLumRm(x,y,phi)
xi = x+sin(phi);
eta = y-1-cos(phi);
rho = (2+sqrt(xi^2+eta^2))/4;
if rho <= 1
u = acos(rho);
[t,v] = tauOmega(u,-u,xi,eta,phi);
if t >= 0 && v <= 0
isok = true;
return
end
end
isok = false;
t = 0;
u = 0;
v = 0;
end
% formula 8.8
function [isok,t,u,v] = LpRumLumRp(x,y,phi)
xi = x+sin(phi);
eta = y-1-cos(phi);
rho = (20-xi^2-eta^2)/16;
if rho >= 0 && rho <= 1
u = -acos(rho);
if u >= -pi/2
[t,v] = tauOmega(u,u,xi,eta,phi);
if t >=0 && v >=0
isok = true;
return
end
end
end
isok = false;
t = 0;
u = 0;
v = 0;
end
% formula 8.9
function [isok,t,u,v] = LpRmSmLm(x,y,phi)
xi = x-sin(phi);
eta = y-1+cos(phi);
[theta,rho] = cart2pol(xi,eta);
if rho >= 2
r = sqrt(rho^2-4);
u = 2-r;
t = mod2pi(theta+atan2(r,-2));
v = mod2pi(phi-pi/2-t);
if t >= 0 && u <= 0 && v <= 0
isok = true;
return
end
end
isok = false;
t = 0;
u = 0;
v = 0;
end
% formula 8.10
function [isok,t,u,v] = LpRmSmRm(x,y,phi)
xi = x+sin(phi);
eta = y-1-cos(phi);
[theta,rho] = cart2pol(-eta,xi);
if rho >= 2
t = theta;
u = 2-rho;
v = mod2pi(t+pi/2-phi);
if t >= 0 && u <= 0 && v <= 0
isok = true;
return
end
end
isok = false;
t = 0;
u = 0;
v = 0;
end
% formula 8.11
function [isok,t,u,v] = LpRmSLmRp(x,y,phi)
xi = x+sin(phi);
eta = y-1-cos(phi);
[~,rho] = cart2pol(xi,eta);
if rho >= 2
u = 4-sqrt(rho^2-4);
if u <= 0
t = mod2pi(atan2((4-u)*xi-2*eta,-2*xi+(u-4)*eta));
v = mod2pi(t-phi);
if t >= 0 && v >= 0
isok = true;
return
end
end
end
isok = false;
t = 0;
u = 0;
v = 0;
end
我们需要定义一些类来辅助之后的工作,第一类定义路径的类型,第二个类定义了对Reeds-Shepp曲线的描述,包括了每一段的长度和每一段的类型。
classdef RSPathElem
enumeration
RS_NOP, RS_LEFT, RS_STRAIGHT, RS_RIGHT
end
properties (Constant)
Type = [
RSPathElem.RS_LEFT, RSPathElem.RS_RIGHT, RSPathElem.RS_LEFT, RSPathElem.RS_NOP, RSPathElem.RS_NOP ; %1
RSPathElem.RS_RIGHT, RSPathElem.RS_LEFT, RSPathElem.RS_RIGHT, RSPathElem.RS_NOP, RSPathElem.RS_NOP ; %2
RSPathElem.RS_LEFT, RSPathElem.RS_RIGHT, RSPathElem.RS_LEFT, RSPathElem.RS_RIGHT, RSPathElem.RS_NOP ; %3
RSPathElem.RS_RIGHT, RSPathElem.RS_LEFT, RSPathElem.RS_RIGHT, RSPathElem.RS_LEFT, RSPathElem.RS_NOP ; %4
RSPathElem.RS_LEFT, RSPathElem.RS_RIGHT, RSPathElem.RS_STRAIGHT, RSPathElem.RS_LEFT, RSPathElem.RS_NOP ; %5
RSPathElem.RS_RIGHT, RSPathElem.RS_LEFT, RSPathElem.RS_STRAIGHT, RSPathElem.RS_RIGHT, RSPathElem.RS_NOP ; %6
RSPathElem.RS_LEFT, RSPathElem.RS_STRAIGHT, RSPathElem.RS_RIGHT, RSPathElem.RS_LEFT, RSPathElem.RS_NOP ; %7
RSPathElem.RS_RIGHT, RSPathElem.RS_STRAIGHT, RSPathElem.RS_LEFT, RSPathElem.RS_RIGHT, RSPathElem.RS_NOP ; %8
RSPathElem.RS_LEFT, RSPathElem.RS_RIGHT, RSPathElem.RS_STRAIGHT, RSPathElem.RS_RIGHT, RSPathElem.RS_NOP ; %9
RSPathElem.RS_RIGHT, RSPathElem.RS_LEFT, RSPathElem.RS_STRAIGHT, RSPathElem.RS_LEFT, RSPathElem.RS_NOP ; %10
RSPathElem.RS_RIGHT, RSPathElem.RS_STRAIGHT, RSPathElem.RS_RIGHT, RSPathElem.RS_LEFT, RSPathElem.RS_NOP ; %11
RSPathElem.RS_LEFT, RSPathElem.RS_STRAIGHT, RSPathElem.RS_LEFT, RSPathElem.RS_RIGHT, RSPathElem.RS_NOP ; %12
RSPathElem.RS_LEFT, RSPathElem.RS_STRAIGHT, RSPathElem.RS_RIGHT, RSPathElem.RS_NOP, RSPathElem.RS_NOP ; %13
RSPathElem.RS_RIGHT, RSPathElem.RS_STRAIGHT, RSPathElem.RS_LEFT, RSPathElem.RS_NOP, RSPathElem.RS_NOP ; %14
RSPathElem.RS_LEFT, RSPathElem.RS_STRAIGHT, RSPathElem.RS_LEFT, RSPathElem.RS_NOP, RSPathElem.RS_NOP ; %15
RSPathElem.RS_RIGHT, RSPathElem.RS_STRAIGHT, RSPathElem.RS_RIGHT, RSPathElem.RS_NOP, RSPathElem.RS_NOP ; %16
RSPathElem.RS_LEFT, RSPathElem.RS_RIGHT, RSPathElem.RS_STRAIGHT, RSPathElem.RS_LEFT, RSPathElem.RS_RIGHT ; %17
RSPathElem.RS_RIGHT, RSPathElem.RS_LEFT, RSPathElem.RS_STRAIGHT, RSPathElem.RS_RIGHT, RSPathElem.RS_LEFT %18
];
end
end
classdef RSPath
properties
type = repmat([RSPathElem.RS_NOP],[1,5]);
t = 0;
u = 0;
v = 0;
w = 0;
x = 0;
totalLength = 0;
end
methods
function obj = RSPath(type,t,u,v,w,x)
obj.type = type;
obj.t = t;
obj.u = u;
obj.v = v;
obj.w = w;
obj.x = x;
obj.totalLength = sum(abs([t,u,v,w,x]));
end
end
end
之后我们需要将上面各公式的计算结果,利用我们前面所说的对称特性进行整合,得到每一种base word的最短路径。
function [isok,path] = CSC(x,y,phi)
Lmin = inf;
type = repmat([RSPathElem.RS_NOP],[1,5]);
path = RSPath(type,0,0,0,0,0);
[isok,t,u,v] = LpSpLp(x,y,phi);
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(15,:),t,u,v,0,0);
end
end
[isok,t,u,v] = LpSpLp(-x,y,-phi); % timeflip
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(15,:),-t,-u,-v,0,0);
end
end
[isok,t,u,v] = LpSpLp(x,-y,-phi); % reflect
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(16,:),t,u,v,0,0);
end
end
[isok,t,u,v] = LpSpLp(-x,-y,phi); % timeflp + reflect
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(16,:),-t,-u,-v,0,0);
end
end
[isok,t,u,v] = LpSpRp(x,y,phi);
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(13,:),t,u,v,0,0);
end
end
[isok,t,u,v] = LpSpRp(-x,y,-phi); % timeflip
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(13,:),-t,-u,-v,0,0);
end
end
[isok,t,u,v] = LpSpRp(x,-y,-phi); % reflect
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(14,:),t,u,v,0,0);
end
end
[isok,t,u,v] = LpSpRp(-x,-y,phi); % timeflip + reflect
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(14,:),-t,-u,-v,0,0);
end
end
if Lmin == inf
isok = false;
else
isok = true;
end
end
function [isok,path] = CCC(x,y,phi)
Lmin = inf;
type = repmat([RSPathElem.RS_NOP],[1,5]);
path = RSPath(type,0,0,0,0,0);
[isok,t,u,v] = LpRmL(x,y,phi);
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(1,:),t,u,v,0,0);
end
end
[isok,t,u,v] = LpRmL(-x,y,-phi); % timeflip
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(1,:),-t,-u,-v,0,0);
end
end
[isok,t,u,v] = LpRmL(x,-y,-phi); % reflect
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(2,:),t,u,v,0,0);
end
end
[isok,t,u,v] = LpRmL(-x,-y,phi); % timeflip + reflect
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(2,:),-t,-u,-v,0,0);
end
end
% backwards
xb = x*cos(phi)+y*sin(phi);
yb = x*sin(phi)-y*cos(phi);
[isok,t,u,v] = LpRmL(xb,yb,phi);
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(1,:),v,u,t,0,0);
end
end
[isok,t,u,v] = LpRmL(-xb,yb,-phi); % timeflip
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(1,:),-v,-u,-t,0,0);
end
end
[isok,t,u,v] = LpRmL(xb,-yb,-phi); % reflect
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(2,:),v,u,t,0,0);
end
end
[isok,t,u,v] = LpRmL(-xb,-yb,phi); % timeflip + reflect
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(2,:),-v,-u,-t,0,0);
end
end
if Lmin == inf
isok = false;
else
isok = true;
end
end
function [isok,path] = CCCC(x,y,phi)
Lmin = inf;
type = repmat([RSPathElem.RS_NOP],[1,5]);
path = RSPath(type,0,0,0,0,0);
[isok,t,u,v] = LpRupLumRm(x,y,phi);
if isok
L = abs(t)+2*abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(3,:),t,u,-u,v,0);
end
end
[isok,t,u,v] = LpRupLumRm(-x,y,-phi); % timeflip
if isok
L = abs(t)+2*abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(3,:),-t,-u,u,-v,0);
end
end
[isok,t,u,v] = LpRupLumRm(x,-y,-phi); % reflect
if isok
L = abs(t)+2*abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(4,:),t,u,-u,v,0);
end
end
[isok,t,u,v] = LpRupLumRm(-x,-y,phi); % timeflip + reflect
if isok
L = abs(t)+2*abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(4,:),-t,-u,u,-v,0);
end
end
[isok,t,u,v] = LpRumLumRp(x,y,phi);
if isok
L = abs(t)+2*abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(3,:),t,u,u,v,0);
end
end
[isok,t,u,v] = LpRumLumRp(-x,y,-phi); % timeflip
if isok
L = abs(t)+2*abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(3,:),-t,-u,-u,-v,0);
end
end
[isok,t,u,v] = LpRumLumRp(x,-y,-phi); % reflect
if isok
L = abs(t)+2*abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(4,:),t,u,u,v,0);
end
end
[isok,t,u,v] = LpRumLumRp(-x,-y,phi); % timeflip + reflect
if isok
L = abs(t)+2*abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(4,:),-t,-u,-u,-v,0);
end
end
if Lmin == inf
isok = false;
else
isok = true;
end
end
function [isok,path] = CCSC(x,y,phi)
Lmin = inf;
type = repmat([RSPathElem.RS_NOP],[1,5]);
path = RSPath(type,0,0,0,0,0);
[isok,t,u,v] = LpRmSmLm(x,y,phi);
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(5,:),t,-pi/2,u,v,0);
end
end
[isok,t,u,v] = LpRmSmLm(-x,y,-phi); % timeflip
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(5,:),-t,pi/2,-u,-v,0);
end
end
[isok,t,u,v] = LpRmSmLm(x,-y,-phi); % reflect
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(6,:),t,-pi/2,u,v,0);
end
end
[isok,t,u,v] = LpRmSmLm(-x,-y,phi); % timeflip + reflect
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(6,:),-t,pi/2,-u,-v,0);
end
end
[isok,t,u,v] = LpRmSmRm(x,y,phi);
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(9,:),t,-pi/2,u,v,0);
end
end
[isok,t,u,v] = LpRmSmRm(-x,y,-phi); % timeflip
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(9,:),-t,pi/2,-u,-v,0);
end
end
[isok,t,u,v] = LpRmSmRm(x,-y,-phi); % reflect
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(10,:),t,-pi/2,u,v,0);
end
end
[isok,t,u,v] = LpRmSmRm(-x,-y,phi); % timeflip + reflect
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(10,:),-t,pi/2,-u,-v,0);
end
end
% backwards
xb = x*cos(phi)+y*sin(phi);
yb = x*sin(phi)-y*cos(phi);
[isok,t,u,v] = LpRmSmLm(xb,yb,phi);
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(7,:),v,u,-pi/2,t,0);
end
end
[isok,t,u,v] = LpRmSmLm(-xb,yb,-phi); % timeflip
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(7,:),-v,-u,pi/2,-t,0);
end
end
[isok,t,u,v] = LpRmSmLm(xb,-yb,-phi); % reflect
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(8,:),v,u,-pi/2,t,0);
end
end
[isok,t,u,v] = LpRmSmLm(-xb,-yb,phi); % timeflip + reflect
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(8,:),-v,-u,pi/2,-t,0);
end
end
[isok,t,u,v] = LpRmSmRm(xb,yb,phi);
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(11,:),v,u,-pi/2,t,0);
end
end
[isok,t,u,v] = LpRmSmRm(-xb,yb,-phi); % timeflip
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(11,:),-v,-u,pi/2,-t,0);
end
end
[isok,t,u,v] = LpRmSmRm(xb,-yb,-phi); % reflect
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(12,:),v,u,-pi/2,t,0);
end
end
[isok,t,u,v] = LpRmSmRm(-xb,-yb,phi); % timeflip + reflect
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(12,:),-v,-u,pi/2,-t,0);
end
end
if Lmin == inf
isok = false;
else
isok = true;
end
end
function [isok,path] = CCSCC(x,y,phi)
Lmin = inf;
type = repmat([RSPathElem.RS_NOP],[1,5]);
path = RSPath(type,0,0,0,0,0);
[isok,t,u,v] = LpRmSLmRp(x,y,phi);
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(17,:),t,-pi/2,u,-pi/2,v);
end
end
[isok,t,u,v] = LpRmSLmRp(x,y,phi); % timeflip
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(17,:),-t,pi/2,-u,pi/2,-v);
end
end
[isok,t,u,v] = LpRmSLmRp(x,y,phi); % reflect
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(18,:),t,-pi/2,u,-pi/2,v);
end
end
[isok,t,u,v] = LpRmSLmRp(x,y,phi); % timeflip + reflect
if isok
L = abs(t)+abs(u)+abs(v);
if Lmin > L
Lmin = L;
path = RSPath(RSPathElem.Type(18,:),-t,pi/2,-u,pi/2,-v);
end
end
if Lmin == inf
isok = false;
else
isok = true;
end
end
最后我们利用放缩来计算到目标的最短路径,再将路径画出来,大功告成。
function path = FindRSPath(x,y,phi)
rmin = 5; %minimum turning radius
x = x/rmin;
y = y/rmin;
[isok1,path1] = CSC(x,y,phi);
[isok2,path2] = CCC(x,y,phi);
[isok3,path3] = CCCC(x,y,phi);
[isok4,path4] = CCSC(x,y,phi);
[isok5,path5] = CCSCC(x,y,phi);
isoks = [isok1, isok2, isok3, isok4, isok5];
paths = {path1, path2, path3, path4, path5};
Lmin = inf;
for i = 1:5
if isoks(i) == true
elem = paths{i};
if Lmin > elem.totalLength
Lmin = elem.totalLength;
path = elem;
end
end
end
end
function PlotPath(path)
type = path.type;
% x = [];
% y = [];
seg = [path.t,path.u,path.v,path.w,path.x];
pvec = [0,0,0];
rmin = 5;
for i = 1:5
if type(i) == RSPathElem.RS_STRAIGHT
theta = pvec(3);
dl = rmin*seg(i);
dvec = [dl*cos(theta), dl*sin(theta), 0];
dx = pvec(1)+linspace(0,dvec(1));
dy = pvec(2)+linspace(0,dvec(2));
% x = [x,dx];
% y = [y,dy];
pvec = pvec+dvec;
elseif type(i) == RSPathElem.RS_LEFT
theta = pvec(3);
dtheta = seg(i);
cenx = pvec(1)-rmin*sin(theta);
ceny = pvec(2)+rmin*cos(theta);
t = theta-pi/2+linspace(0,dtheta);
dx = cenx+rmin*cos(t);
dy = ceny+rmin*sin(t);
% x = [x,dx];
% y = [y,dy];
theta = theta+dtheta;
pvec = [dx(end),dy(end),theta];
dl = dtheta;
elseif type(i) == RSPathElem.RS_RIGHT
theta = pvec(3);
dtheta = -seg(i);
cenx = pvec(1)+rmin*sin(theta);
ceny = pvec(2)-rmin*cos(theta);
t = theta+pi/2+linspace(0,dtheta);
dx = cenx+rmin*cos(t);
dy = ceny+rmin*sin(t);
% x = [x,dx];
% y = [y,dy];
theta = theta+dtheta;
pvec = [dx(end),dy(end),theta];
dl = -dtheta;
else
% do nothing
end
if dl > 0
plot(dx,dy,'b');
else
plot(dx,dy,'r');
end
hold on
end
hold off
axis equal
end
最后测试一下代码,看看这妖娆的曲线,其中蓝色表示前进,红色表示倒退。
path = FindRSPath(1,1,pi);
PlotPath(path);