canny检测matlab,matlab houghlines_matlab canny边缘检测_canny边缘检测simulink

Log和Canny边缘检测(附Matlab程序)

一、 实验目的

(1) 通过实验分析不同尺度下LOG和Canny边缘提取算子的性能。

(2) 研究这两种边缘提取方法在不同参数下的边缘提取能力。

(3) 使用不同的滤波尺度和添加噪声能量(噪声水平),通过与无噪声图像对比,选择最能说明自己结论的滤波尺度和噪声水平,并做出分析说明。

二、 实验原理

边缘的含义:在数字图像中,边缘是指图像局部变化最显著的部分,边缘主要存在于目标与目标,目标与背景之间,是图像局部特性的不连续性,如灰度的突变、纹理结构的突变、颜色的突变等。尽管图像的边缘点产生的原因各不相同,但他们都是图形上灰度不连续或灰度急剧变化的点,图像边缘分为阶跃状、斜坡状和屋顶状。

一般图像边缘检测方法主要有如下四个步骤:

(1)图像滤波:传统边缘检测算法主要是基于图像强度的一阶和二阶导数,但导数的计算对噪声很敏感,因此必须使用滤波器来改善与噪声有关的边缘检测器的性能。需要指出的是,大多数滤波器在降低噪声的同时也造成了边缘强度的损失,因此,在增强边缘和降低噪声之间需要一个折衷的选择。

(2)图像增强:增强边缘的基础是确定图像各点邻域强度的变化值。增强算法可以将邻域(或局部)强度值有显著变化的点突显出来。matlab canny边缘检测边缘增强一般是通过计算梯度的幅值来完成的。

(3)图像检测:在图像中有许多点的梯度幅值比较大,而这些点在特定的应用领域中并不都是边缘,所以应该用某种方法来确定哪些点是边缘点。最简单的边缘检测判断依据是梯度幅值。

(4)图像定位:如果某一应用场合要求确定边缘位置,则边缘的位置可在子像素分辨率上来估计,边缘的方位也可以被估计出来。

LOG检测算子

(1)LOG边缘检测算子

在20世纪70年代,Marr理论根据神经生理学实验得出了以下结论:物体的边界是将亮度图像与其解释连接起来的最重要线索。边缘检测技术在当时是基于很小邻域的卷积,只对特殊图像效果好。这些边缘检测子的主要缺点是它们依赖物体的大小且对噪声敏感。

基于二阶导数过零点的边缘检测技术探究了阶跃边缘对应于图像函数陡峭的变化这一事实。图像函数的一阶导数在对应于图像边缘的位置上应该取得极值,因此二阶导数在同一位置应该为0;而寻找过零点位置比起极值来得更容易和更准确。关键的问题是如何稳定地计算二阶导数,一种可能性是首先平滑图像(减小噪声),再计算二阶导数。在选择平滑滤波器时,需要满足两个标准:

(1) 滤波器应该是平滑的且在邻域中大致上是有限带宽的,以便减少会导致函数变化的可能频率数。

(2)空间定位的约束要求滤波器的响应应来自于图像中邻近的点。这两个标准矛盾的,但是可以通过使用高斯分布同时得到优化。在实践中,需要准确地考虑优化的含义。

2D高斯平滑算子(也称为高斯滤波器或简单地称为高斯)由下式给出:

其中是图像坐标,σ是关联的概率分布的标准差。标准差是高斯滤波器的唯一参数,它与滤波器操作邻域的大小成正比。离算子中心越远的像素影响越小,离中心超过3的像素影响可以忽略不计。我们的目标是得到平滑后2D函数的二阶导数。我们知道Laplacian算子给出了二阶导数且是各向同性的。那么高斯平滑后的图像的Laplacian可以表示为:

由于所涉及算子的线性性,微分和卷积运算顺序可以交换:

由于高斯滤波器的导数与所考虑的图像无关,故它可以事先解析地计算出来。这样复合运算的复杂度降低了。选择算子的基础有两个基本概念。第一,算子的高斯部分会模糊图像,从而在尺寸上将结构的灰度(包括噪声)降低到远小于σ的程度,而且高斯函数能在空间和频率两个域平滑图像,因而在原图像中引入不存在的人为干扰(如振铃)的可能性很小。第二,拉普拉斯有各向同性(旋转不变)的重要优点,符合人的视觉系统特性,而且对任何模板方向的灰度变化有相等的响应,从而避免了使用多个模板去计算图像中任何点处的最强响应。

本文来自电脑杂谈,转载请注明本文网址:

http://www.pc-fly.com/a/jisuanjixue/article-33963-1.html

你可能感兴趣的:(canny检测matlab)