Python Opencv 摄像头人脸检测与库中对比

示例下载链接

import cv2
import numpy as np
import face_recognition
import os

path = 'MyPic'
images = []
classNames = []
myList = os.listdir(path)
for cl in myList:
    curImg = cv2.imread(f'{path}/{cl}')
    #读取文件夹中的图片数据
    images.append(curImg)
    classNames.append(os.path.splitext(cl)[0])
print(classNames)

#传入上面读取的所有图片数据
def findEncoding(images):
    encodeList = []
    for img in images:
        #将图片转成RGB格式
        img = cv2.cvtColor(img,cv2.COLOR_RGB2BGR)
        #对所有图片数据进行编码
        encode = face_recognition.face_encodings(img)[0]
        encodeList.append(encode)
    return encodeList

#获取文件夹中所有编码后的图片数据
encodeListKnown = findEncoding(images)
print(len(encodeListKnown))

cap = cv2.VideoCapture(0)

while True:
    #获取摄像头数据
    success,img = cap.read()

    #等比例缩小
    imgS = cv2.resize(img,(0,0),None,0.25,0.25)

    #转换成RGB格式
    imgS = cv2.cvtColor(imgS, cv2.COLOR_RGB2BGR)

    #获取每一帧的人脸位置数据 无则返回空
    facesCurFrame = face_recognition.face_locations(imgS)
    # 获取每一帧的人脸数据编码 无则返回空
    encodesCurFrame = face_recognition.face_encodings(imgS,facesCurFrame)

    #若上面检测到人脸,则进入下面判断 for... in... zip 并行遍历,同时遍历两个列表
    for encodeFace,faceLoc in zip(encodesCurFrame,facesCurFrame):
        matches = face_recognition.compare_faces(encodeListKnown,encodeFace)
        faceDis = face_recognition.face_distance(encodeListKnown,encodeFace)
        print(faceDis,matches)

    cv2.imshow("Image", imgS)
    cv2.waitKey(1)
# imgElon = face_recognition.load_image_file('MyPic/6.jpg')
# imgElon = cv2.cvtColor(imgElon,cv2.COLOR_RGB2BGR)
# imgTest = face_recognition.load_image_file('MyPic/3.jpg')
# imgTest = cv2.cvtColor(imgTest,cv2.COLOR_RGB2BGR)

打开摄像头后,将打印的头像与库中已有头像进行识别,第二张和最后一张图像与摄像头拍摄人脸相同,识别成功。

Python Opencv 摄像头人脸检测与库中对比_第1张图片

你可能感兴趣的:(Python,人脸识别,python,图像识别,计算机视觉,opencv)