基于C++的深度学习模型部署

1.1 引言

 PyTorch作为一款端到端的深度学习框架,在1.0版本之后已具备较好的生产环境部署条件。除了在web端撰写REST API进行部署之外(参考),软件端的部署也有广泛需求。尤其是最近发布的1.5版本,提供了更为稳定的C++前端API。

     工业界与学术界最大的区别在于工业界的模型需要落地部署,学界更多的是关心模型的精度要求,而不太在意模型的部署性能。一般来说,我们用深度学习框架训练出一个模型之后,使用Python就足以实现一个简单的推理演示了。但在生产环境下,Python的可移植性和速度性能远不如C++。所以对于深度学习算法工程师而言,Python通常用来做idea的快速实现以及模型训练,而用C++作为模型的生产工具。目前PyTorch能够完美的将二者结合在一起。实现PyTorch模型部署的核心技术组件就是TorchScript和libtorch

     所以基于PyTorch的深度学习算法工程化流程大体如下图所示:

                                                                                                                                          

1.2 TorchScript

     TorchScript可以视为PyTorch模型的一种中间表示,TorchScript表示的PyTorch模型可以直接在C++中进行读取。PyTorch在1.0版本之后都可以使用TorchScript的方式来构建序列化的模型。TorchScript提供了Tracing和Script两种应用方式。

     Tracing应用示例如下:

class MyModel(torch.nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.linear = torch.nn.Linear(4, 4)
 
 
    def forward(self, x, h):
        new_h = torch.tanh(self.linear(x) + h)
        return new_h, new_h
 
 
# 创建模型实例 
my_model = MyModel()
# 输入示例
x, h = torch.rand(3, 4), torch.rand(3, 4)
# torch.jit.trace方法对模型构建TorchScript
traced_model = torch.jit.trace(my_model, (x, h))
# 保存转换后的模型
traced_model.save('model.pt')

     在这段代码中,我们先是定义了一个简单模型并创建模型实例,然后给定输入示例,Tracing方法最关键的一步在于使用torch.jit.trace方法对模型进行TorchScript转化。我们可以获得转化后的traced_model对象获得其计算图属性和代码属性。计算图属性: 

print(traced_model.graph)
graph(%self.1 : __torch__.torch.nn.modules.module.___torch_mangle_1.Module,
      %input : Float(3, 4),
      %h : Float(3, 4)):
  %19 : __torch__.torch.nn.modules.module.Module = prim::GetAttr[name="linear"](%self.1)
  %21 : Tensor = prim::CallMethod[name="forward"](%19, %input)
  %12 : int = prim::Constant[value=1]() # /var/lib/jenkins/workspace/beginner_source/Intro_to_TorchScript_tutorial.py:188:0
  %13 : Float(3, 4) = aten::add(%21, %h, %12) # /var/lib/jenkins/workspace/beginner_source/Intro_to_TorchScript_tutorial.py:188:0
  %14 : Float(3, 4) = aten::tanh(%13) # /var/lib/jenkins/workspace/beginner_source/Intro_to_TorchScript_tutorial.py:188:0
  %15 : (Float(3, 4), Float(3, 4)) = prim::TupleConstruct(%14, %14)
  return (%15)

 代码属性:

print(traced_cell.code)
def forward(self,
    input: Tensor,
    h: Tensor) -> Tuple[Tensor, Tensor]:
  _0 = torch.add((self.linear).forward(input, ), h, alpha=1)
  _1 = torch.tanh(_0)
  return (_1, _1)

     这样我们就可以将整个模型都保存到硬盘上了,并且经过这种方式保存下来的模型可以加载到其他其他语言环境中。

     TorchScript的另一种实现方式是Script的方式,可以算是对Tracing方式的一种补充。当模型代码中含有if或者for-loop等控制流程序时,使用Tracing方式是无效的,这时候可以采用Script方式来进行实现TorchScript。实现方法跟Tracing差异不大,关键在于把jit.tracing换成jit.script方法,示例如下。

scripted_model = torch.jit.script(MyModel)
scripted_model.save('model.pt')

      除了Tracing和Script之外,我们也可以混合使用这两种方式,这里不做详述。总之,TorchScript为我们提供了一种表示形式,可以对代码进行编译器优化以提供更有效的执行。

1.3 libtorch

     在Python环境下对训练好的模型进行转换之后,我们需要C++环境下的PyTorch来读取模型并进行编译部署。这种C++环境下的PyTorch就是libtorch。因为libtorch通常用来作为PyTorch模型的C++接口,libtorch也称之为PyTorch的C++前端。

     我们可以直接从PyTorch官网下载已经编译好的libtorch安装包,当然也可以下载源码自行进行编译。这里需要注意的是,安装的libtorch版本要与Python环境下的PyTorch版本一致。

     安装好libtorch后可简单测试下是否正常。比如我们用TorchScript转换一个预训练模型,示例如下: 

import torch
import torchvision.models as models
vgg16 = models.vgg16()
example = torch.rand(1, 3, 224, 224).cuda() 
model = model.eval()
traced_script_module = torch.jit.trace(model, example)
output = traced_script_module(torch.ones(1,3,224,224).cuda())
traced_script_module.save('vgg16-trace.pt')
print(output)

输出为: 

tensor([[ -0.8301, -35.6095, 12.4716]], device='cuda:0',
        grad_fn=)

     然后切换到C++环境,编写CmakeLists文件如下:

cmake_minimum_required(VERSION 3.0.0 FATAL_ERROR)
project(libtorch_test)
find_package(Torch REQUIRED)
message(STATUS "Pytorch status:")
message(STATUS "libraries: ${TORCH_LIBRARIES}")
add_executable(libtorch_test test.cpp)
target_link_libraries(libtorch_test "${TORCH_LIBRARIES}")
set_property(TARGET libtorch_test PROPERTY CXX_STANDARD 11)

 继续编写test.cpp代码如下:

#include "torch/script.h"
#include "torch/torch.h"
#include 
#include 
using namespace std;
 
 
int main(int argc, const char* argv[]){
    if (argc != 2) {
        std::cerr << "usage: example-app \n";
        return -1;
    }
 
 
    // 读取TorchScript转化后的模型
    torch::jit::script::Module module;
    try {
        module = torch::jit::load(argv[1]);
    }
 
 
    catch (const c10::Error& e) {
        std::cerr << "error loading the model\n";
        return -1;
    }
 
 
    module->to(at::kCUDA);
    assert(module != nullptr);
    std::cout << "ok\n";
 
 
    // 构建示例输入
    std::vector inputs;
    inputs.push_back(torch::ones({1, 3, 224, 224}).to(at::kCUDA));
 
 
    // 执行模型推理并输出tensor
    at::Tensor output = module->forward(inputs).toTensor();
    std::cout << output.slice(/*dim=*/1, /*start=*/0, /*end=*/5) << '\n';}

     编译test.cpp并执行,输出如下。对比Python环境下的的运行结果,可以发现基本是一致的,这也说明当前环境下libtorch安装没有问题。 

ok
-0.8297, -35.6048, 12.4823
[Variable[CUDAFloatType]{1,3}]

 1.4 完整部署流程

     通过前面对TorchScript和libtorch的描述,其实我们已经基本将PyTorch的C++部署已经基本讲到了,这里我们再来完整的理一下整个流程。基于C++的PyTorch模型部署流程如下。

第一步:

     通过torch.jit.trace方法将PyTorch模型转换为TorchScript,示例如下:

import torch
from torchvision.models import resnet18
model =resnet18()
example = torch.rand(1, 3, 224, 224)
tracing.traced_script_module = torch.jit.trace(model, example)

第二步:

     将TorchScript序列化为.pt模型文件。

traced_script_module.save("traced_resnet_model.pt")

第三步:

     在C++中导入序列化之后的TorchScript模型,为此我们需要分别编写包含调用程序的cpp文件、配置和编译用的CMakeLists.txt文件。CMakeLists.txt文件示例内容如下:

cmake_minimum_required(VERSION 3.0 FATAL_ERROR)
project(custom_ops)
find_package(Torch REQUIRED)
add_executable(example-app example-app.cpp)
target_link_libraries(example-app "${TORCH_LIBRARIES}")
set_property(TARGET example-app PROPERTY CXX_STANDARD 14)

      包含模型调用程序的example-app.cpp示例编码如下:

#include  // torch头文件.
#include #include 
 
 
int main(int argc, const char* argv[]) {
  if (argc != 2) {
    std::cerr << "usage: example-app \n";
    return -1;
  }
 
 
  torch::jit::script::Module module;
  try {
    // 反序列化:导入TorchScript模型
    module = torch::jit::load(argv[1]);
  }
 
 
  catch (const c10::Error& e) {
    std::cerr << "error loading the model\n";
    return -1;
  }
  std::cout << "ok\n";}

     两个文件编写完成之后便可对其执行编译:

mkdir example_test
cd example_test
cmake -DCMAKE_PREFIX_PATH=/path/to/libtorch ..
cmake --example_test . --config Release

第四步:

给example-app.cpp添加模型推理代码并执行:

std::vector inputs;inputs.push_back(torch::ones({1, 3, 224, 224}));
// 执行推理并将模型转化为Tensor
output = module.forward(inputs).toTensor();std::cout << output.slice(/*dim=*/1, /*start=*/0, /*end=*/5) << '\n';

     以上便是C++中部署PyTorch模型的全过程,相关教程可参考PyTorch官方:https://pytorch.org/tutorials/

总结

     模型部署对于算法工程师而言非常重要,关系到你的工作能否产生实际价值。相应的也需要大家具备足够的工程能力,比如MySQL、Redis、C++、前端和后端的一些知识和开发技术,需要各位算法工程师都能够基本了解和能够使用。

你可能感兴趣的:(模型部署,深度学习,pytorch)