- 本文为365天深度学习训练营 中的学习记录博客
- 参考文章:Pytorch实战 | 第P9周:YOLOv5-Backbone模块实现(训练营内部成员可读)
- 原作者:K同学啊|接辅导、项目定制
第P9周:YOLOv5-Backbone模块实现
要求:
分享一张 K同学啊 绘制的YOLOv5_6.0版本的算法框架图,希望它可以有助于你完成本次探索~
cmd
输入nvcc -V
或nvcc --version
指令可查看)如果设备上支持GPU就使用GPU,否则使用CPU
import torch
import torchvision
if __name__=='__main__':
''' 设置GPU '''
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Using {} device\n".format(device))
Using cuda device
import os
import PIL
import random
import pathlib
import warnings
import numpy as np
import matplotlib.pyplot as plt
''' 读取本地数据集并划分训练集与测试集 '''
def localDataset(data_dir):
data_dir = pathlib.Path(data_dir)
# 读取本地数据集
data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[-1] for path in data_paths]
# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = torchvision.transforms.Compose([
torchvision.transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
# torchvision.transforms.RandomHorizontalFlip(), # 随机水平翻转
torchvision.transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
torchvision.transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
total_dataset = torchvision.datasets.ImageFolder(data_dir, transform=train_transforms)
print(total_dataset, '\n')
print(total_dataset.class_to_idx, '\n')
# 划分训练集与测试集
train_size = int(0.8 * len(total_dataset))
test_size = len(total_dataset) - train_size
print('train_size', train_size, 'test_size', test_size, '\n')
train_dataset, test_dataset = torch.utils.data.random_split(total_dataset, [train_size, test_size])
return classeNames, train_dataset, test_dataset
''' 加载数据,并设置batch_size '''
def loadData(train_ds, test_ds, batch_size=32, root='', show_flag=False):
# 从 train_ds 加载训练集
train_dl = torch.utils.data.DataLoader(train_ds,
batch_size=batch_size,
shuffle=True,
num_workers=1)
# 从 test_ds 加载测试集
test_dl = torch.utils.data.DataLoader(test_ds,
batch_size=batch_size,
shuffle=True,
num_workers=1)
# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
for X, y in test_dl:
print('Shape of X [N, C, H, W]: ', X.shape)
print('Shape of y: ', y.shape, y.dtype, '\n')
break
imgs, labels = next(iter(train_dl))
print('Image shape: ', imgs.shape, '\n')
# torch.Size([32, 3, 224, 224]) # 所有数据集中的图像都是224*224的RGB图
displayData(imgs, root, show_flag)
return train_dl, test_dl
batch_size = 4
data_dir = './data/weather_photos/'
train_ds, test_ds = localDataset(data_dir)
train_dl, test_dl = loadData(train_ds, test_ds, batch_size, data_dir, True)
Dataset ImageFolder
Number of datapoints: 1125
Root location: data\weather_photos
StandardTransform
Transform: Compose(
Resize(size=[224, 224], interpolation=bilinear)
ToTensor()
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
)
{'cloudy': 0, 'rain': 1, 'shine': 2, 'sunrise': 3}
train_size 900 test_size 225
num_classes 4
Shape of X [N, C, H, W]: torch.Size([4, 3, 224, 224])
Shape of y: torch.Size([4]) torch.int64
Image shape: torch.Size([4, 3, 224, 224])
''' 数据可视化 '''
def displayData(imgs, root='', flag=False):
# 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure('Data Visualization', figsize=(20, 5))
for i, imgs in enumerate(imgs[:20]):
# 维度顺序调整 [3, 224, 224]->[224, 224, 3]
npimg = imgs.numpy().transpose((1, 2, 0))
# 将整个figure分成2行10列,绘制第i+1个子图。
plt.subplot(2, 10, i+1)
plt.imshow(npimg) # cmap=plt.cm.binary
plt.axis('off')
plt.savefig(os.path.join(root, 'DatasetDisplay.png'))
if flag:
plt.show()
else:
plt.close('all')
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchsummary
''' 搭建包含Backbone模块的模型 '''
def autopad(k, p=None): # kernel, padding
# Pad to 'same'
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Conv(nn.Module):
# Standard convolution
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
def forward(self, x):
return self.act(self.bn(self.conv(x)))
class Bottleneck(nn.Module):
# Standard bottleneck
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_, c2, 3, 1, g=g)
self.add = shortcut and c1 == c2
def forward(self, x):
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class C3(nn.Module):
# CSP Bottleneck with 3 convolutions
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
def forward(self, x):
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
class SPPF(nn.Module):
# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
super().__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_ * 4, c2, 1, 1)
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
def forward(self, x):
x = self.cv1(x)
with warnings.catch_warnings():
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
y1 = self.m(x)
y2 = self.m(y1)
return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
'''这个是YOLOv5, 6.0版本的主干网络,这里进行复现(注:有部分删改,详细讲解将在后续进行展开)'''
class YOLOv5_backbone(nn.Module):
def __init__(self):
super(YOLOv5_backbone, self).__init__()
self.Conv_1 = Conv(3, 64, 3, 2, 2)
self.Conv_2 = Conv(64, 128, 3, 2)
self.C3_3 = C3(128,128)
self.Conv_4 = Conv(128, 256, 3, 2)
self.C3_5 = C3(256,256)
self.Conv_6 = Conv(256, 512, 3, 2)
self.C3_7 = C3(512,512)
self.Conv_8 = Conv(512, 1024, 3, 2)
self.C3_9 = C3(1024, 1024)
self.SPPF = SPPF(1024, 1024, 5)
# 全连接网络层,用于分类
self.classifier = nn.Sequential(
nn.Linear(in_features=65536, out_features=100),
nn.ReLU(),
nn.Linear(in_features=100, out_features=4)
)
def forward(self, x):
x = self.Conv_1(x)
x = self.Conv_2(x)
x = self.C3_3(x)
x = self.Conv_4(x)
x = self.C3_5(x)
x = self.Conv_6(x)
x = self.C3_7(x)
x = self.Conv_8(x)
x = self.C3_9(x)
x = self.SPPF(x)
x = torch.flatten(x, start_dim=1)
x = self.classifier(x)
return x
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Using {} device\n".format(device))
''' 调用并将模型转移到GPU中(我们模型运行均在GPU中进行) '''
model = YOLOv5_backbone().to(device)
''' 显示网络结构 '''
torchsummary.summary(model, (3, 224, 224))
print(model)
Using cuda device
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 64, 113, 113] 1,728
BatchNorm2d-2 [-1, 64, 113, 113] 128
SiLU-3 [-1, 64, 113, 113] 0
Conv-4 [-1, 64, 113, 113] 0
Conv2d-5 [-1, 128, 57, 57] 73,728
BatchNorm2d-6 [-1, 128, 57, 57] 256
SiLU-7 [-1, 128, 57, 57] 0
Conv-8 [-1, 128, 57, 57] 0
Conv2d-9 [-1, 64, 57, 57] 8,192
BatchNorm2d-10 [-1, 64, 57, 57] 128
SiLU-11 [-1, 64, 57, 57] 0
Conv-12 [-1, 64, 57, 57] 0
Conv2d-13 [-1, 64, 57, 57] 4,096
BatchNorm2d-14 [-1, 64, 57, 57] 128
SiLU-15 [-1, 64, 57, 57] 0
Conv-16 [-1, 64, 57, 57] 0
Conv2d-17 [-1, 64, 57, 57] 36,864
BatchNorm2d-18 [-1, 64, 57, 57] 128
SiLU-19 [-1, 64, 57, 57] 0
Conv-20 [-1, 64, 57, 57] 0
Bottleneck-21 [-1, 64, 57, 57] 0
Conv2d-22 [-1, 64, 57, 57] 8,192
BatchNorm2d-23 [-1, 64, 57, 57] 128
SiLU-24 [-1, 64, 57, 57] 0
Conv-25 [-1, 64, 57, 57] 0
Conv2d-26 [-1, 128, 57, 57] 16,384
BatchNorm2d-27 [-1, 128, 57, 57] 256
SiLU-28 [-1, 128, 57, 57] 0
Conv-29 [-1, 128, 57, 57] 0
C3-30 [-1, 128, 57, 57] 0
Conv2d-31 [-1, 256, 29, 29] 294,912
BatchNorm2d-32 [-1, 256, 29, 29] 512
SiLU-33 [-1, 256, 29, 29] 0
Conv-34 [-1, 256, 29, 29] 0
Conv2d-35 [-1, 128, 29, 29] 32,768
BatchNorm2d-36 [-1, 128, 29, 29] 256
SiLU-37 [-1, 128, 29, 29] 0
Conv-38 [-1, 128, 29, 29] 0
Conv2d-39 [-1, 128, 29, 29] 16,384
BatchNorm2d-40 [-1, 128, 29, 29] 256
SiLU-41 [-1, 128, 29, 29] 0
Conv-42 [-1, 128, 29, 29] 0
Conv2d-43 [-1, 128, 29, 29] 147,456
BatchNorm2d-44 [-1, 128, 29, 29] 256
SiLU-45 [-1, 128, 29, 29] 0
Conv-46 [-1, 128, 29, 29] 0
Bottleneck-47 [-1, 128, 29, 29] 0
Conv2d-48 [-1, 128, 29, 29] 32,768
BatchNorm2d-49 [-1, 128, 29, 29] 256
SiLU-50 [-1, 128, 29, 29] 0
Conv-51 [-1, 128, 29, 29] 0
Conv2d-52 [-1, 256, 29, 29] 65,536
BatchNorm2d-53 [-1, 256, 29, 29] 512
SiLU-54 [-1, 256, 29, 29] 0
Conv-55 [-1, 256, 29, 29] 0
C3-56 [-1, 256, 29, 29] 0
Conv2d-57 [-1, 512, 15, 15] 1,179,648
BatchNorm2d-58 [-1, 512, 15, 15] 1,024
SiLU-59 [-1, 512, 15, 15] 0
Conv-60 [-1, 512, 15, 15] 0
Conv2d-61 [-1, 256, 15, 15] 131,072
BatchNorm2d-62 [-1, 256, 15, 15] 512
SiLU-63 [-1, 256, 15, 15] 0
Conv-64 [-1, 256, 15, 15] 0
Conv2d-65 [-1, 256, 15, 15] 65,536
BatchNorm2d-66 [-1, 256, 15, 15] 512
SiLU-67 [-1, 256, 15, 15] 0
Conv-68 [-1, 256, 15, 15] 0
Conv2d-69 [-1, 256, 15, 15] 589,824
BatchNorm2d-70 [-1, 256, 15, 15] 512
SiLU-71 [-1, 256, 15, 15] 0
Conv-72 [-1, 256, 15, 15] 0
Bottleneck-73 [-1, 256, 15, 15] 0
Conv2d-74 [-1, 256, 15, 15] 131,072
BatchNorm2d-75 [-1, 256, 15, 15] 512
SiLU-76 [-1, 256, 15, 15] 0
Conv-77 [-1, 256, 15, 15] 0
Conv2d-78 [-1, 512, 15, 15] 262,144
BatchNorm2d-79 [-1, 512, 15, 15] 1,024
SiLU-80 [-1, 512, 15, 15] 0
Conv-81 [-1, 512, 15, 15] 0
C3-82 [-1, 512, 15, 15] 0
Conv2d-83 [-1, 1024, 8, 8] 4,718,592
BatchNorm2d-84 [-1, 1024, 8, 8] 2,048
SiLU-85 [-1, 1024, 8, 8] 0
Conv-86 [-1, 1024, 8, 8] 0
Conv2d-87 [-1, 512, 8, 8] 524,288
BatchNorm2d-88 [-1, 512, 8, 8] 1,024
SiLU-89 [-1, 512, 8, 8] 0
Conv-90 [-1, 512, 8, 8] 0
Conv2d-91 [-1, 512, 8, 8] 262,144
BatchNorm2d-92 [-1, 512, 8, 8] 1,024
SiLU-93 [-1, 512, 8, 8] 0
Conv-94 [-1, 512, 8, 8] 0
Conv2d-95 [-1, 512, 8, 8] 2,359,296
BatchNorm2d-96 [-1, 512, 8, 8] 1,024
SiLU-97 [-1, 512, 8, 8] 0
Conv-98 [-1, 512, 8, 8] 0
Bottleneck-99 [-1, 512, 8, 8] 0
Conv2d-100 [-1, 512, 8, 8] 524,288
BatchNorm2d-101 [-1, 512, 8, 8] 1,024
SiLU-102 [-1, 512, 8, 8] 0
Conv-103 [-1, 512, 8, 8] 0
Conv2d-104 [-1, 1024, 8, 8] 1,048,576
BatchNorm2d-105 [-1, 1024, 8, 8] 2,048
SiLU-106 [-1, 1024, 8, 8] 0
Conv-107 [-1, 1024, 8, 8] 0
C3-108 [-1, 1024, 8, 8] 0
Conv2d-109 [-1, 512, 8, 8] 524,288
BatchNorm2d-110 [-1, 512, 8, 8] 1,024
SiLU-111 [-1, 512, 8, 8] 0
Conv-112 [-1, 512, 8, 8] 0
MaxPool2d-113 [-1, 512, 8, 8] 0
MaxPool2d-114 [-1, 512, 8, 8] 0
MaxPool2d-115 [-1, 512, 8, 8] 0
Conv2d-116 [-1, 1024, 8, 8] 2,097,152
BatchNorm2d-117 [-1, 1024, 8, 8] 2,048
SiLU-118 [-1, 1024, 8, 8] 0
Conv-119 [-1, 1024, 8, 8] 0
SPPF-120 [-1, 1024, 8, 8] 0
Linear-121 [-1, 100] 6,553,700
ReLU-122 [-1, 100] 0
Linear-123 [-1, 4] 404
================================================================
Total params: 21,729,592
Trainable params: 21,729,592
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 137.59
Params size (MB): 82.89
Estimated Total Size (MB): 221.06
----------------------------------------------------------------
YOLOv5_backbone(
(Conv_1): Conv(
(conv): Conv2d(3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(2, 2), bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(Conv_2): Conv(
(conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(C3_3): C3(
(cv1): Conv(
(conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv3): Conv(
(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): Sequential(
(0): Bottleneck(
(cv1): Conv(
(conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
)
(Conv_4): Conv(
(conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(C3_5): C3(
(cv1): Conv(
(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv3): Conv(
(conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): Sequential(
(0): Bottleneck(
(cv1): Conv(
(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
)
(Conv_6): Conv(
(conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(C3_7): C3(
(cv1): Conv(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv3): Conv(
(conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): Sequential(
(0): Bottleneck(
(cv1): Conv(
(conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
)
(Conv_8): Conv(
(conv): Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(C3_9): C3(
(cv1): Conv(
(conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv3): Conv(
(conv): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): Sequential(
(0): Bottleneck(
(cv1): Conv(
(conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
)
(SPPF): SPPF(
(cv1): Conv(
(conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(2048, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False)
)
(classifier): Sequential(
(0): Linear(in_features=65536, out_features=100, bias=True)
(1): ReLU()
(2): Linear(in_features=100, out_features=4, bias=True)
)
)
optimizer.zero_grad()
loss.backward()
optimizer.step()
关于以上三个函数,我在之前的文章中有做说明,这里不再赘述
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小
num_batches = len(dataloader) # 批次数目
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器
def test (dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小
num_batches = len(dataloader) # 批次数目
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
model.train()
model.eval()
关于以上两个个函数,我在之前的文章中有做说明,这里不再赘述
start_epoch = 0
epochs = 50
learn_rate = 1e-4 # 初始学习率
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
#optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
optimizer = torch.optim.Adam(model.parameters(),lr=learn_rate)
# 调用官方动态学习率接口时使用
#lambda1 = lambda epoch: 0.92 ** (epoch // 4)
#scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) # 选定调整方法
train_loss = []
train_acc = []
test_loss = []
test_acc = []
epoch_best_acc = 0
''' 加载之前保存的模型 '''
if not os.path.exists(output) or not os.path.isdir(output):
os.makedirs(output)
if start_epoch > 0:
resumeFile = os.path.join(output, 'epoch'+str(start_epoch)+'.pkl')
if not os.path.exists(resumeFile) or not os.path.isfile(resumeFile):
start_epoch = 0
else:
model.load_state_dict(torch.load(resumeFile)) # 加载模型参数
''' 加载之前保存的模型 '''
if not os.path.exists(output) or not os.path.isdir(output):
os.makedirs(output)
if start_epoch > 0:
resumeFile = os.path.join(output, 'epoch'+str(start_epoch)+'.pkl')
if not os.path.exists(resumeFile) or not os.path.isfile(resumeFile):
start_epoch = 0
else:
model.load_state_dict(torch.load(resumeFile)) # 加载模型参数
''' 开始训练模型 '''
print('\nStart training...')
best_model = None
for epoch in range(start_epoch, epochs):
# 更新学习率(使用自定义学习率时使用)
# adjust_learning_rate(optimizer, epoch, learn_rate)
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
# scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
# 获取当前的学习率
lr = optimizer.state_dict()['param_groups'][0]['lr']
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
print(time.strftime('[%Y-%m-%d %H:%M:%S]'), template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))
# 保存最佳模型
if epoch_test_acc>epoch_best_acc:
''' 保存最优模型参数 '''
epoch_best_acc = epoch_test_acc
best_model = copy.deepcopy(model)
print(('acc = {:.1f}%, saving model to best.pkl').format(epoch_best_acc*100))
saveFile = os.path.join(output, 'best.pkl')
torch.save(best_model.state_dict(), saveFile)
if epoch_test_acc==1 and epoch_train_acc==1:
saveFile = os.path.join(output, 'epoch'+str(epoch+1)+'.pkl')
torch.save(model.state_dict(), saveFile)
print('Done\n')
''' 保存模型参数 '''
saveFile = os.path.join(output, 'epoch'+str(epochs)+'.pkl')
torch.save(model.state_dict(), saveFile)
Start training...
[2022-11-24 19:08:26] Epoch: 1, Train_acc:53.6%, Train_loss:1.168, Test_acc:78.2%, Test_loss:0.628, Lr:1.00E-04
acc = 78.2%, saving model to best.pkl
[2022-11-24 19:08:42] Epoch: 2, Train_acc:67.0%, Train_loss:0.797, Test_acc:73.8%, Test_loss:0.630, Lr:1.00E-04
[2022-11-24 19:09:00] Epoch: 3, Train_acc:76.8%, Train_loss:0.597, Test_acc:86.2%, Test_loss:0.362, Lr:1.00E-04
acc = 86.2%, saving model to best.pkl
[2022-11-24 19:09:17] Epoch: 4, Train_acc:77.9%, Train_loss:0.587, Test_acc:84.0%, Test_loss:0.428, Lr:1.00E-04
[2022-11-24 19:09:34] Epoch: 5, Train_acc:81.0%, Train_loss:0.482, Test_acc:87.6%, Test_loss:0.406, Lr:1.00E-04
acc = 87.6%, saving model to best.pkl
[2022-11-24 19:09:51] Epoch: 6, Train_acc:82.1%, Train_loss:0.488, Test_acc:85.8%, Test_loss:0.354, Lr:1.00E-04
[2022-11-24 19:10:07] Epoch: 7, Train_acc:85.7%, Train_loss:0.377, Test_acc:84.4%, Test_loss:0.382, Lr:1.00E-04
[2022-11-24 19:10:23] Epoch: 8, Train_acc:88.3%, Train_loss:0.316, Test_acc:90.7%, Test_loss:0.280, Lr:1.00E-04
acc = 90.7%, saving model to best.pkl
[2022-11-24 19:10:39] Epoch: 9, Train_acc:89.9%, Train_loss:0.276, Test_acc:94.2%, Test_loss:0.192, Lr:1.00E-04
acc = 94.2%, saving model to best.pkl
[2022-11-24 19:10:56] Epoch:10, Train_acc:88.3%, Train_loss:0.315, Test_acc:93.3%, Test_loss:0.227, Lr:1.00E-04
[2022-11-24 19:11:13] Epoch:11, Train_acc:88.2%, Train_loss:0.304, Test_acc:93.3%, Test_loss:0.162, Lr:1.00E-04
[2022-11-24 19:11:29] Epoch:12, Train_acc:90.6%, Train_loss:0.254, Test_acc:94.7%, Test_loss:0.165, Lr:1.00E-04
acc = 94.7%, saving model to best.pkl
[2022-11-24 19:11:45] Epoch:13, Train_acc:93.3%, Train_loss:0.193, Test_acc:96.4%, Test_loss:0.117, Lr:1.00E-04
acc = 96.4%, saving model to best.pkl
[2022-11-24 19:12:01] Epoch:14, Train_acc:94.4%, Train_loss:0.172, Test_acc:92.0%, Test_loss:0.231, Lr:1.00E-04
[2022-11-24 19:12:18] Epoch:15, Train_acc:93.6%, Train_loss:0.168, Test_acc:90.7%, Test_loss:0.243, Lr:1.00E-04
[2022-11-24 19:12:34] Epoch:16, Train_acc:95.8%, Train_loss:0.126, Test_acc:92.4%, Test_loss:0.236, Lr:1.00E-04
[2022-11-24 19:12:50] Epoch:17, Train_acc:95.1%, Train_loss:0.129, Test_acc:92.0%, Test_loss:0.284, Lr:1.00E-04
[2022-11-24 19:13:06] Epoch:18, Train_acc:97.1%, Train_loss:0.079, Test_acc:95.6%, Test_loss:0.123, Lr:1.00E-04
[2022-11-24 19:13:22] Epoch:19, Train_acc:95.3%, Train_loss:0.135, Test_acc:92.4%, Test_loss:0.196, Lr:1.00E-04
[2022-11-24 19:13:37] Epoch:20, Train_acc:94.9%, Train_loss:0.149, Test_acc:90.2%, Test_loss:0.325, Lr:1.00E-04
[2022-11-24 19:13:53] Epoch:21, Train_acc:95.3%, Train_loss:0.137, Test_acc:94.7%, Test_loss:0.212, Lr:1.00E-04
[2022-11-24 19:14:09] Epoch:22, Train_acc:96.7%, Train_loss:0.115, Test_acc:94.7%, Test_loss:0.161, Lr:1.00E-04
[2022-11-24 19:14:26] Epoch:23, Train_acc:98.6%, Train_loss:0.051, Test_acc:95.1%, Test_loss:0.173, Lr:1.00E-04
[2022-11-24 19:14:43] Epoch:24, Train_acc:98.9%, Train_loss:0.040, Test_acc:93.8%, Test_loss:0.252, Lr:1.00E-04
[2022-11-24 19:15:06] Epoch:25, Train_acc:98.8%, Train_loss:0.049, Test_acc:95.1%, Test_loss:0.172, Lr:1.00E-04
[2022-11-24 19:15:53] Epoch:26, Train_acc:97.1%, Train_loss:0.083, Test_acc:90.2%, Test_loss:0.320, Lr:1.00E-04
[2022-11-24 19:16:38] Epoch:27, Train_acc:94.9%, Train_loss:0.133, Test_acc:90.2%, Test_loss:0.327, Lr:1.00E-04
[2022-11-24 19:17:23] Epoch:28, Train_acc:97.9%, Train_loss:0.072, Test_acc:94.2%, Test_loss:0.253, Lr:1.00E-04
[2022-11-24 19:18:08] Epoch:29, Train_acc:98.9%, Train_loss:0.032, Test_acc:88.0%, Test_loss:0.418, Lr:1.00E-04
[2022-11-24 19:18:50] Epoch:30, Train_acc:96.3%, Train_loss:0.109, Test_acc:88.0%, Test_loss:0.514, Lr:1.00E-04
[2022-11-24 19:19:33] Epoch:31, Train_acc:96.7%, Train_loss:0.098, Test_acc:90.7%, Test_loss:0.308, Lr:1.00E-04
[2022-11-24 19:20:15] Epoch:32, Train_acc:98.8%, Train_loss:0.032, Test_acc:93.3%, Test_loss:0.239, Lr:1.00E-04
[2022-11-24 19:20:57] Epoch:33, Train_acc:98.2%, Train_loss:0.047, Test_acc:94.7%, Test_loss:0.192, Lr:1.00E-04
[2022-11-24 19:21:39] Epoch:34, Train_acc:96.9%, Train_loss:0.066, Test_acc:92.9%, Test_loss:0.266, Lr:1.00E-04
[2022-11-24 19:22:21] Epoch:35, Train_acc:98.1%, Train_loss:0.045, Test_acc:93.8%, Test_loss:0.285, Lr:1.00E-04
[2022-11-24 19:23:02] Epoch:36, Train_acc:98.8%, Train_loss:0.044, Test_acc:89.8%, Test_loss:0.512, Lr:1.00E-04
[2022-11-24 19:23:44] Epoch:37, Train_acc:99.2%, Train_loss:0.028, Test_acc:92.0%, Test_loss:0.424, Lr:1.00E-04
[2022-11-24 19:24:26] Epoch:38, Train_acc:97.9%, Train_loss:0.060, Test_acc:92.4%, Test_loss:0.283, Lr:1.00E-04
[2022-11-24 19:25:09] Epoch:39, Train_acc:98.4%, Train_loss:0.039, Test_acc:91.1%, Test_loss:0.272, Lr:1.00E-04
[2022-11-24 19:25:51] Epoch:40, Train_acc:98.0%, Train_loss:0.058, Test_acc:89.3%, Test_loss:0.360, Lr:1.00E-04
[2022-11-24 19:26:33] Epoch:41, Train_acc:97.3%, Train_loss:0.070, Test_acc:92.0%, Test_loss:0.394, Lr:1.00E-04
[2022-11-24 19:27:15] Epoch:42, Train_acc:98.9%, Train_loss:0.031, Test_acc:93.3%, Test_loss:0.345, Lr:1.00E-04
[2022-11-24 19:27:58] Epoch:43, Train_acc:98.9%, Train_loss:0.022, Test_acc:94.7%, Test_loss:0.332, Lr:1.00E-04
[2022-11-24 19:28:40] Epoch:44, Train_acc:98.9%, Train_loss:0.037, Test_acc:93.3%, Test_loss:0.251, Lr:1.00E-04
[2022-11-24 19:29:22] Epoch:45, Train_acc:97.2%, Train_loss:0.078, Test_acc:92.9%, Test_loss:0.324, Lr:1.00E-04
[2022-11-24 19:30:04] Epoch:46, Train_acc:98.8%, Train_loss:0.033, Test_acc:92.9%, Test_loss:0.389, Lr:1.00E-04
[2022-11-24 19:30:47] Epoch:47, Train_acc:99.4%, Train_loss:0.025, Test_acc:91.1%, Test_loss:0.416, Lr:1.00E-04
[2022-11-24 19:31:29] Epoch:48, Train_acc:98.8%, Train_loss:0.033, Test_acc:93.8%, Test_loss:0.358, Lr:1.00E-04
[2022-11-24 19:32:11] Epoch:49, Train_acc:99.4%, Train_loss:0.013, Test_acc:93.8%, Test_loss:0.336, Lr:1.00E-04
[2022-11-24 19:32:53] Epoch:50, Train_acc:99.9%, Train_loss:0.011, Test_acc:93.8%, Test_loss:0.321, Lr:1.00E-04
Done
最终结果,在第23轮时(Epoch:13的结果)的训练集准确率达到93.3%,测试集准确率达到96.4%。
import matplotlib.pyplot as plt
import warnings
''' 结果可视化 '''
def displayResult(train_acc, test_acc, train_loss, test_loss, start_epoch, epochs, output=''):
# 隐藏警告
warnings.filterwarnings("ignore") # 忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 # 分辨率
epochs_range = range(start_epoch, epochs)
plt.figure('Result Visualization', figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.savefig(os.path.join(output, 'AccuracyLoss.png'))
plt.show()
''' 绘制准确率&损失率曲线图 '''
displayResult(train_acc, test_acc, train_loss, test_loss, start_epoch, epochs, output)
best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
print("EVAL {:.5f}, {:.5f}".format(epoch_test_acc, epoch_test_loss))
EVAL 0.96444, 0.11800