Lasso 稀疏约束 + Group Lasso 分组最小角回归算法

本文转自:https://blog.csdn.net/asd136912/article/details/78401915

最近在读论文的过程中遇到了 group lasso,找到一篇相关的博客,放在这里供自己查阅。

背景

Lasso(least absolute shrinkage and selection operator,又译最小绝对值收敛和选择算子、套索算法)是一种同时进行特征选择和正则化(数学)的回归分析方法,旨在增强统计模型的预测准确性和可解释性,最初由斯坦福大学统计学教授Robert Tibshirani于1996年基于Leo Breiman的非负参数推断(Nonnegative Garrote, NNG)提出。Lasso算法最初用于计算最小二乘法模型,这个简单的算法揭示了很多估计量的重要性质,如估计量与岭回归(Ridge regression,也叫Tikhonov regularization)和最佳子集选择的关系,Lasso系数估计值(estimate)和软阈值(soft thresholding)之间的联系。它也揭示了当协变量共线时,Lasso系数估计值不一定唯一(类似标准线性回归)。

范数(norm)定义

首先需要了解一下几种向量范式的定义: 
0-范数:即向量中非零元素的个数

                                                                   ∥w∥0=∑i1(wi≠0)\left \| w \right \|_{0}=\sum_{i} 1(w_{i}\neq 0)

1-范数:即向量元素绝对值之和,matlab中可以调用函数norm(x, 1) 
                                                                   \left \| w \right \|_{1}=\sum_{i} \left |w_{i}^{_{^{_{}}}} \right |

2-范数:Euclid范数(欧几里得范数,常用计算向量长度),即向量元素绝对值的平方和再开方,matlab中可以调用函数norm(x, 2) 
                                                              

p-范数:即向量元素绝对值的p次方和的1/p次幂,matlab中可以调用函数norm(x, p) 

                                           
Ridge Regression 岭回归

在这里先简单地引入一些Ridge Regression岭回归 
在线性回归中,我们需要对代价函数Cost Function J 最小化拟合训练集: 

                                                  

岭回归,就是在线性回归的基础上加上l2-norm的约束。为了之后推导方便改成了1/2,因为是求代价函数最小值w所以并不改变结果。

                                                                

其中λ是正则项(惩罚系数),对w的模做约束,使得它的数值会比较小,很大程度上减轻了overfitting过拟合的问题。通过求解可以得出w 

                                                                   

我们也可以通过下面的优化目标形式表达: 

                                                         

上面两种优化形式是等价的,我们可以找到相对应的λ和θ。

The Least Absolute Shrinkage and Selection Operator(Lasso) 稀疏约束

在前面的ridge regression中,对w做2范数约束,就是把解约束在一个l2-ball里面,放缩是对球的半径放缩,因此w的每一个维度都在以同一个系数放缩(如下图),通过放缩不会产生稀疏的解——即某些w的维度是0。在实际应用中,数据的维度中是存在噪音和冗余的,稀疏的解可以找到有用的维度并且减少冗余,提高回归预测的准确性和鲁棒性(减少了overfitting)。在压缩感知、稀疏编码等非常多的机器学习模型中都需要用到LASSO稀疏约束。

稀疏约束最直观的形式应该是范数0,如上面的范数介绍,w的0范数是求w中非零元素的个数。如果约束∥w∥0≤k,就是约束非零元素个数不大于k。不过很明显,0范式是不连续的且非凸的,如果在线性回归中加上0范式的约束,就变成了一个组合优化问题:挑出≤k个系数然后做回归,找到目标函数的最小值对应的系数组合,是一个NP问题。

不过l1-norm(1范数)也可以达到稀疏的效果,是0范数的最优凸近似,更重要的是1范式容易求解,并且是凸的,所以几乎看得到稀疏约束的地方都是用的1范式,从而可以引出The Least Absolute Shrinkage and Selection Operator(Lasso) 稀疏约束。

LASSO是另一种缩减方法,将回归系数收缩在一定的区域内。LASSO的主要思想是构造一个一阶惩罚函数获得一个精炼的模型, 通过最终确定一些变量的系数为0进行特征筛选。

                                                             Lasso 稀疏约束 + Group Lasso 分组最小角回归算法_第1张图片

                                  

椭圆和蓝色的区域(惩罚函数)的切点就是目标函数的最优解,我们可以看到,如果蓝色区域是圆,则很容易切到圆周的任意一点,但是很难切到坐标轴上,这样就得不出稀疏的解,冗余数据就会相对较多;但是如果蓝色区域是菱形或者多边形,则很容易切到坐标轴上,因此很容易产生稀疏的结果。这也说明了为什么1范式会是稀疏的。

虽然惩罚函数只是做了细微的变化,但是相比岭回归可以直接通过矩阵运算得到回归系数相比,LASSO的计算变得相对复杂。由于惩罚项中含有绝对值,此函数的导数是连续不光滑的,所以无法进行求导并使用梯度下降优化。这个时候需要使用subgradient次梯度….论证过程….最终可以得出

                                                                  

从图上可以看出岭回归实际上就是做了一个放缩,而lasso实际是做了一个soft thresholding,把很多权重项置0了,所以就得到了稀疏的结果。

Group Lasso 分组最小角回归算法

Yuan在2006年将lasso方法推广到group上面,诞生了group lasso。我们可以将所有变量分组,然后在目标函数中惩罚每一组的L2范数,这样达到的效果就是可以将一整组的系数同时消成零,即抹掉一整组的变量,这种手法叫做Group Lasso 分组最小角回归算法。其目标函数为:

                                                            

在group lasso中,将p个特征分成G组,其中i的取值为1,2..g.. G。Ig是g组的特征下标, ql−−√ql是每一组的加权,可以按需调节。不同于Lasso 方法将每个特征的系数项的绝对值加总, 这里所加总的是每个组系数的 L2 范数,在优化的过程中,该结构尽量选出更少的组(组间稀疏),而组内是L2范数,稀疏约束没那么强。

容易看出,group lasso是对lasso的一种推广,即将特征分组后的lasso。显然,如果每个组的特征个数都是1,则group lasso就回归到原始的lasso。为了求解group lasso, 可以首先假设组内特征是正交的,针对这种情形可以利用分块坐标下降法求解,对于非正交的情形,可以首先对组内特征施加正交化。

参考文献

  1. http://statweb.stanford.edu/~tibs/ftp/sparse-grlasso.pdf
  2. ftp://ess.r-project.org/Teaching/buhlmann/advanced-comput-statist/slides1.pdf
  3. http://blog.csdn.net/xbinworld/article/details/44276389
  4. http://freemind.pluskid.org/machine-learning/sparsity-and-some-basics-of-l1-regularization/
  5. http://blog.csdn.net/infskyline/article/details/47296701
  6. https://www.zhihu.com/question/38121173/answer/166238142#showWechatShareTip
  7. https://ask.hellobi.com/blog/mlanddlanddm/7198
  8. 周志华,机器学习, Chapter 11 P252

你可能感兴趣的:(论文,算法)