统计学习方法读书笔记15-逻辑斯蒂回归习题

文章目录

      • 1.课后习题
      • 2.视频课后习题

1.课后习题

统计学习方法读书笔记15-逻辑斯蒂回归习题_第1张图片
统计学习方法读书笔记15-逻辑斯蒂回归习题_第2张图片
统计学习方法读书笔记15-逻辑斯蒂回归习题_第3张图片

import numpy as np
import time
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from pylab import mpl

# 图像显示中文
mpl.rcParams['font.sans-serif'] = ['Microsoft YaHei']

class LogisticRegression:
    def __init__(self, learn_rate=0.1, max_iter=10000, tol=1e-2):
        self.learn_rate = learn_rate  # 学习率
        self.max_iter = max_iter  # 迭代次数
        self.tol = tol  # 迭代停止阈值
        self.w = None  # 权重

    def preprocessing(self, X):
        """将原始X末尾加上一列,该列数值全部为1"""
        row = X.shape[0]
        y = np.ones(row).reshape(row, 1)
        X_prepro = np.hstack((X, y))
        return X_prepro

    def sigmod(self, x):
        return 1 / (1 + np.exp(-x))

    def fit(self, X_train, y_train):
        X = self.preprocessing(X_train)
        y = y_train.T
        # 初始化权重w
        self.w = np.array([[0] * X.shape[1]], dtype=np.float)
        k = 0
        for loop in range(self.max_iter):
            # 计算梯度
            z = np.dot(X, self.w.T)
            grad = X * (y - self.sigmod(z))
            grad = grad.sum(axis=0)
            # 利用梯度的绝对值作为迭代中止的条件
            if (np.abs(grad) <= self.tol).all():
                break
            else:
                # 更新权重w 梯度上升——求极大值
                self.w += self.learn_rate * grad
                k += 1
        print("迭代次数:{}次".format(k))
        print("最终梯度:{}".format(grad))
        print("最终权重:{}".format(self.w[0]))

    def predict(self, x):
        p = self.sigmod(np.dot(self.preprocessing(x), self.w.T))
        print("Y=1的概率被估计为:{:.2%}".format(p[0][0]))  # 调用score时,注释掉
        p[np.where(p > 0.5)] = 1
        p[np.where(p < 0.5)] = 0
        return p

    def score(self, X, y):
        y_c = self.predict(X)
        error_rate = np.sum(np.abs(y_c - y.T)) / y_c.shape[0]
        return 1 - error_rate

    def draw(self, X, y):
        # 分离正负实例点
        y = y[0]
        X_po = X[np.where(y == 1)]
        X_ne = X[np.where(y == 0)]
        # 绘制数据集散点图
        ax = plt.axes(projection='3d')
        x_1 = X_po[0, :]
        y_1 = X_po[1, :]
        z_1 = X_po[2, :]
        x_2 = X_ne[0, :]
        y_2 = X_ne[1, :]
        z_2 = X_ne[2, :]
        ax.scatter(x_1, y_1, z_1, c="r", label="正实例")
        ax.scatter(x_2, y_2, z_2, c="b", label="负实例")
        ax.legend(loc='best')
        
        # 绘制p=0.5的区分平面
        x = np.linspace(-3, 3, 3)
        y = np.linspace(-3, 3, 3)
        x_3, y_3 = np.meshgrid(x, y)
        a, b, c, d = self.w[0]
        z_3 = -(a * x_3 + b * y_3 + d) / c
        ax.plot_surface(x_3, y_3, z_3, alpha=0.5)  # 调节透明度
        plt.show()

# 训练数据集
X_train = np.array([[3, 3, 3], [4, 3, 2], [2, 1, 2], [1, 1, 1], [-1, 0, 1], [2, -2, 1]])
y_train = np.array([[1, 1, 1, 0, 0, 0]])
# 构建实例,进行训练
clf = LogisticRegression()
clf.fit(X_train, y_train)
clf.draw(X_train, y_train)

迭代次数:3232次
最终梯度:[ 0.00144779  0.00046133  0.00490279 -0.00999848]
最终权重:[  2.96908597   1.60115396   5.04477438 -13.43744079]

统计学习方法读书笔记15-逻辑斯蒂回归习题_第4张图片
统计学习方法读书笔记15-逻辑斯蒂回归习题_第5张图片
链接3

2.视频课后习题

在这里插入图片描述

"""逻辑斯蒂回归算法实现-使用梯度下降"""
# 全梯度下降法
import numpy as np
import time
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import matplotlib as mpl

# mpl.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['font.sans-serif'] = ['SimHei']    # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号


class LogisticRegression:
    def __init__(self, learn_rate=0.01, max_iter=10000, tol=1e-2):
        self.learn_rate = learn_rate  # 学习率
        self.max_iter = max_iter  # 迭代次数
        self.tol = tol  # 迭代停止阈值
        self.w = None  # 权重

    def preprocessing(self, X):
        """将原始X末尾加上一列,该列数值全部为1"""
        row = X.shape[0]
        y = np.ones(row).reshape(row, 1)
        X_prepro = np.hstack((X, y))
        return X_prepro

    def sigmod(self, x):
        return 1 / (1 + np.exp(-x))

    def fit(self, X_train, y_train):
        X = self.preprocessing(X_train)
        y = y_train.T
        # 初始化权重w
        self.w = np.array([[0] * X.shape[1]], dtype=np.float)
        k = 0
        for loop in range(self.max_iter):
            # 计算梯度
            z = np.dot(X, self.w.T)
            grad = X * (y - self.sigmod(z))
            grad = grad.sum(axis=0)
            # 利用梯度的绝对值作为迭代中止的条件
            if (np.abs(grad) <= self.tol).all():
                break
            else:
                # 更新权重w 梯度上升——求极大值
                self.w += self.learn_rate * grad
                k += 1
        print("迭代次数:{}次".format(k))
        print("最终梯度:{}".format(grad))
        print("最终权重:{}".format(self.w[0]))

    def predict(self, x):
        p = self.sigmod(np.dot(self.preprocessing(x), self.w.T))
        print("Y=1的概率被估计为:{:.2%}".format(p[0][0]))  # 调用score时,注释掉
        p[np.where(p > 0.5)] = 1
        p[np.where(p < 0.5)] = 0
        return p

    def score(self, X, y):
        y_c = self.predict(X)
        error_rate = np.sum(np.abs(y_c - y.T)) / y_c.shape[0]
        return 1 - error_rate

    def draw(self, X, y):
        # 分离正负实例点
        y = y[0]
        X_po = X[np.where(y == 1)]
        X_ne = X[np.where(y == 0)]
        # 绘制数据集散点图
        ax = plt.axes(projection='3d')
        x_1 = X_po[0, :]
        y_1 = X_po[1, :]
        z_1 = X_po[2, :]
        x_2 = X_ne[0, :]
        y_2 = X_ne[1, :]
        z_2 = X_ne[2, :]
        ax.scatter(x_1, y_1, z_1, c="r", label="正实例")
        ax.scatter(x_2, y_2, z_2, c="b", label="负实例")
        ax.legend(loc='best')
        # 绘制p=0.5的区分平面
        x = np.linspace(-3, 3, 3)
        y = np.linspace(-3, 3, 3)
        x_3, y_3 = np.meshgrid(x, y)
        a, b, c, d = self.w[0]
        z_3 = -(a * x_3 + b * y_3 + d) / c
        ax.plot_surface(x_3, y_3, z_3, alpha=0.5)  # 调节透明度
        plt.show()


def main():
    star = time.time()
    # 训练数据集
    X_train = np.array([[3, 3, 3], [4, 3, 2], [2, 1, 2], [1, 1, 1], [-1, 0, 1], [2, -2, 1]])
    y_train = np.array([[1, 1, 1, 0, 0, 0]])
    # 构建实例,进行训练
    clf = LogisticRegression()
    clf.fit(X_train, y_train)
    # 预测新数据
    X_new = np.array([[1, 2, -2]])
    y_predict = clf.predict(X_new)
    print("{}被分类为:{}".format(X_new[0], y_predict[0]))
    clf.draw(X_train, y_train)

    # 利用已有数据对训练模型进行评价
    X_test=X_train
    y_test=y_train
    correct_rate=clf.score(X_test,y_test)
    print("共测试{}组数据,正确率:{:.2%}".format(X_test.shape[0],correct_rate))

    end = time.time()
    print("用时:{:.3f}s".format(end - star))


if __name__ == "__main__":
    main()

迭代次数:10000次
最终梯度:[ 0.00483138  0.00138275  0.01561255 -0.03217626]
最终权重:[ 2.40550339  1.42893511  3.19459105 -9.63604478]
Y=1的概率被估计为:0.00%
[ 1  2 -2]被分类为:[0.]
Y=1的概率被估计为:100.00%
共测试6组数据,正确率:100.00%
用时:0.324s
"""逻辑斯蒂回归算法实现-使用随机梯度下降"""
# 随机梯度下降法
import numpy as np
import time
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号


class LogisticRegression:
    def __init__(self, learn_rate=0.01, max_iter=10000, tol=1e-3):
        self.learn_rate = learn_rate  # 学习率
        self.max_iter = max_iter  # 迭代次数
        self.tol = tol  # 迭代停止阈值
        self.w = None  # 权重

    def preprocessing(self, X):
        """将原始X末尾加上一列,该列数值全部为1"""
        row = X.shape[0]
        y = np.ones(row).reshape(row, 1)
        X_prepro = np.hstack((X, y))
        return X_prepro

    def sigmod(self, x):
        return 1 / (1 + np.exp(-x))

    def fit(self, X_train, y_train):
        X = self.preprocessing(X_train)
        y = y_train.T
        # 初始化权重w
        self.w = np.array([[0] * X.shape[1]], dtype=np.float)
        i = 0
        k = 0
        for loop in range(self.max_iter):
            # 计算梯度
            z = np.dot(X[i], self.w.T)
            grad = X[i] * (y[i] - self.sigmod(z))
            # 利用梯度的绝对值作为迭代中止的条件
            if (np.abs(grad) <= self.tol).all():
                break
            else:
                # 更新权重w 梯度上升——求极大值
                self.w += self.learn_rate * grad
                k += 1
                # 由于迭代轮数可能超过数据量,所以需要取余
                i = (i + 1) % X.shape[0]

        print("迭代次数:{}次".format(k))
        print("最终梯度:{}".format(grad))
        print("最终权重:{}".format(self.w[0]))

    def predict(self, x):
        p = self.sigmod(np.dot(self.preprocessing(x), self.w.T))
        print("Y=1的概率被估计为:{:.2%}".format(p[0][0]))  # 调用score时,注释掉
        p[np.where(p > 0.5)] = 1
        p[np.where(p < 0.5)] = 0
        print('p=', p)
        return p

    def score(self, X, y):
        y_c = self.predict(X)
        error_rate = np.sum(np.abs(y_c - y.T)) / y_c.shape[0]
        return 1 - error_rate

    def draw(self, X, y):
        # 分离正负实例点
        y = y[0]
        X_po = X[np.where(y == 1)]
        X_ne = X[np.where(y == 0)]
        # 绘制数据集散点图
        ax = plt.axes(projection='3d')
        x_1 = X_po[0, :]
        y_1 = X_po[1, :]
        z_1 = X_po[2, :]
        x_2 = X_ne[0, :]
        y_2 = X_ne[1, :]
        z_2 = X_ne[2, :]
        ax.scatter(x_1, y_1, z_1, c="r", label="正实例")
        ax.scatter(x_2, y_2, z_2, c="b", label="负实例")
        ax.legend(loc='best')
        # 绘制p=0.5的区分平面
        x = np.linspace(-3, 3, 3)
        y = np.linspace(-3, 3, 3)
        x_3, y_3 = np.meshgrid(x, y)
        a, b, c, d = self.w[0]
        z_3 = -(a * x_3 + b * y_3 + d) / c
        ax.plot_surface(x_3, y_3, z_3, alpha=0.5)  # 调节透明度
        plt.show()


def main():
    star = time.time()
    # 训练数据集
    X_train = np.array([[3, 3, 3], [4, 3, 2], [2, 1, 2], [1, 1, 1], [-1, 0, 1], [2, -2, 1]])
    y_train = np.array([[1, 1, 1, 0, 0, 0]])
    # 构建实例,进行训练
    clf = LogisticRegression()
    clf.fit(X_train, y_train)
    # 预测新数据
    X_new = np.array([[1, 2, -2],[4, 3, 2]])
    y_predict = clf.predict(X_new)

    print("{}被分类为:{}".format(X_new[0], y_predict[0]))
    clf.draw(X_train, y_train)
    # 利用已有数据对训练模型进行评价
    # X_test=X_train
    # y_test=y_train
    # correct_rate=clf.score(X_test,y_test)
    # print("共测试{}组数据,正确率:{:.2%}".format(X_test.shape[0],correct_rate))
    end = time.time()
    print("用时:{:.3f}s".format(end - star))


if __name__ == "__main__":
    main()

迭代次数:10000次
最终梯度:[-0.29285292 -0.29285292 -0.29285292 -0.29285292]
最终权重:[ 1.53586681  1.23393345  0.75978189 -4.42286443]
Y=1的概率被估计为:12.58%
p= [[0.]
 [1.]]
[ 1  2 -2]被分类为:[0.]
用时:0.271s

"""逻辑斯蒂回归算法实现-调用sklearn模块"""

from sklearn.linear_model import LogisticRegression
import numpy as np

def main():
    # 训练数据集
    X_train=np.array([[3,3,3],[4,3,2],[2,1,2],[1,1,1],[-1,0,1],[2,-2,1]])
    y_train=np.array([1,1,1,0,0,0])
    # 选择不同solver,构建实例,进行训练、测试
    methodes=["liblinear","newton-cg","lbfgs","sag","saga"]
    res=[]
    X_new = np.array([[1, 2, -2]])
    for method in methodes:
        clf=LogisticRegression(solver=method,intercept_scaling=2,max_iter=1000)
        clf.fit(X_train,y_train)
        # 预测新数据
        y_predict=clf.predict(X_new)
        #利用已有数据对训练模型进行评价
        X_test=X_train
        y_test=y_train
        correct_rate=clf.score(X_test,y_test)

        res.append((y_predict,correct_rate))

    # 格式化输出
    methodes=["liblinear","newton-cg","lbfgs    ","sag      ","saga      "]
    # ''.join()-‘delimiter’.join(seq)表示将序列中的元素以指定的字符连接生成一个新的字符串。
    # seq表示要连接的元素序列、字符串、元组、字典
    print("solver选择:          {}".format("  ".join(method for method in methodes)))
    print("{}被分类为:  {}".format(X_new[0],"        ".join(str(re[0]) for re in res)))
    # round() 方法返回浮点数x的四舍五入值。
    print("测试{}组数据,正确率: {}".format(X_train.shape[0],"        ".join(str(round(re[1],1)) for re in res)))

if __name__=="__main__":
    main()
solver选择:          liblinear  newton-cg  lbfgs      sag        saga      
[ 1  2 -2]被分类为:  [0]        [0]        [0]        [0]        [0]
测试6组数据,正确率: 1.0        1.0        1.0        1.0        1.0

你可能感兴趣的:(#,机器学习《统计学习方法》,python,机器学习,逻辑斯蒂回归)