- 多模态大模型:技术原理与实战 看清GPT的进化史和创新点
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
多模态大模型:技术原理与实战看清GPT的进化史和创新点1.背景介绍1.1人工智能的发展历程1.1.1早期人工智能1.1.2机器学习时代1.1.3深度学习的崛起1.2自然语言处理的演进1.2.1基于规则的方法1.2.2统计机器学习方法1.2.3深度学习方法1.3大语言模型的出现1.3.1Transformer架构的提出1.3.2GPT系列模型的发展1.3.3多模态大模型的兴起2.核心概念与联系2.1
- 【机器学习|学习笔记】组合特征(Feature Combinations)是提升模型性能、挖掘特征交互信息、增强非线性表达能力的有效手段。
努力毕业的小土博^_^
机器学习学习笔记机器学习学习笔记人工智能神经网络深度学习
【机器学习|学习笔记】组合特征(FeatureCombinations)是提升模型性能、挖掘特征交互信息、增强非线性表达能力的有效手段。【机器学习|学习笔记】组合特征(FeatureCombinations)是提升模型性能、挖掘特征交互信息、增强非线性表达能力的有效手段。文章目录【机器学习|学习笔记】组合特征(FeatureCombinations)是提升模型性能、挖掘特征交互信息、增强非线性表达
- R语言的软件开发工具
纪霁然
包罗万象golang开发语言后端
R语言的软件开发工具引言R语言因其强大的数据分析能力和丰富的统计包,自发布以来便广受欢迎。随着数据科学和分析的迅猛发展,R语言也逐渐成为数据分析、机器学习和统计建模领域的重要工具。为了更好地利用R语言进行软件开发,许多软件开发工具和环境应运而生。本文将深入探讨R语言的主要开发工具,帮助开发者更高效地进行数据处理和分析。1.R和RStudio基础R语言本身是一个用于统计计算和图形绘制的编程语言,而R
- 结合创新idea:机器学习+运筹优化=CCF高端局
Ai多利
机器学习人工智能
2024深度学习发论文&模型涨点之——机器学习+运筹优化机器学习是人工智能的一个分支,它使计算机系统能够从数据中学习并改进其性能,而无需进行明确的编程。运筹优化,也称为运筹学或运营管理,是应用数学的一个分支,它使用数学模型和算法来支持复杂决策过程的制定。机器学习与运筹优化的结合是一个前沿且活跃的研究领域,它们相互补充,为解决复杂问题提供了新的思路和方法。小编整理了一些机器学习+运筹优化【论文+代码
- Jupyter安装指南及Python配置
CodeWG
pythonjupyteridePython
Jupyter是一个非常流行的交互式计算环境,广泛用于数据分析、机器学习和科学计算等领域。本文将详细介绍如何安装Jupyter并配置Python环境。步骤1:安装Python首先,我们需要安装Python。请按照以下步骤进行操作:打开Python官方网站(https://www.python.org)并下载适用于您操作系统的最新版本的Python。运行下载的安装程序,并按照向导的指示进行安装。在安
- Python scikit-learn 【机器学习库】全面讲解
让AI成为我们的得力助手:《用Cursor玩转AI辅助编程——不写代码也能做软件开发》scikit-learn(简称sklearn)是Python最流行的机器学习库之一,提供简单高效的数据挖掘和数据分析工具。它基于NumPy、SciPy和Matplotlib构建,广泛应用于工业界和学术界。核心优势统一API设计:所有模型使用一致的接口(fit()、predict()、score())丰富的算法:覆
- 供应链风险管理:AI预测潜在风险
AI智能应用
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
供应链风险管理,AI预测,机器学习,深度学习,自然语言处理,风险评估,供应链可视化1.背景介绍在当今全球化经济体系中,供应链的复杂性和脆弱性日益凸显。供应链风险是指任何可能对供应链正常运行造成负面影响的事件或因素。这些风险可能来自自然灾害、政治动荡、经济波动、技术故障、供应商违约等方面。一旦供应链风险爆发,可能会导致生产中断、产品短缺、成本飙升、品牌形象受损等严重后果。传统供应链风险管理方法主要依
- 供应链风险管理:AI如何预测供应链风险
AI大模型应用之禅
javapythonjavascriptkotlingolang架构人工智能
供应链风险管理,AI预测,机器学习,深度学习,自然语言处理,时间序列分析,风险评估1.背景介绍在当今全球化经济体系中,供应链风险已成为企业面临的重大挑战。供应链的复杂性和不可预测性使得企业更容易受到各种风险的影响,例如自然灾害、政治动荡、经济波动、疫情爆发等。这些风险可能导致供应中断、成本增加、交付延迟,甚至损害企业声誉。传统供应链风险管理方法主要依赖于经验和专家判断,缺乏数据驱动和预测能力。随着
- 2024大模型秋招LLM相关面试题整理
AGI大模型资料分享官
人工智能深度学习机器学习自然语言处理语言模型easyui
0一些基础术语大模型:一般指1亿以上参数的模型,但是这个标准一直在升级,目前万亿参数以上的模型也有了。大语言模型(LargeLanguageModel,LLM)是针对语言的大模型。175B、60B、540B等:这些一般指参数的个数,B是Billion/十亿的意思,175B是1750亿参数,这是ChatGPT大约的参数规模。强化学习:(ReinforcementLearning)一种机器学习的方法,
- 【python实用小脚本-127】基于 Python 的 Google 图片爬取工具:实现高效图片数据收集
Kyln.Wu
Pythonpython开发语言
引言在数据科学、机器学习和多媒体应用中,图片数据的收集是一个常见且重要的任务。Google图片是一个丰富的图片资源库,能够为各种项目提供大量的图片数据。本文将介绍一个基于Python的Google图片爬取工具,它能够自动化地从Google图片搜索结果中下载图片。该工具主要利用了Python的selenium、BeautifulSoup、urllib和argparse库,结合了网页自动化和数据解析技
- 【Python爬虫进阶】从网页抓取到数据清洗与存储——完整实战教程
Python爬虫项目
python爬虫开发语言javascript自然语言处理selenium
1.为什么网页抓取后需要数据清洗?在实际项目中,抓取的原始数据往往是杂乱的、不完整的、格式各异的。如果不清洗,直接用来建模、分析,会导致:脏数据干扰(如乱码、重复数据)异常值影响结果(如薪资异常高)格式不统一(比如地点有中文名和英文名混杂)所以,抓取数据后,必须进行系统清洗与标准化,才能用于后续的:数据分析可视化展示机器学习建模2.项目概览:从抓取到存储的完整流程本项目流程如下:确定抓取目标(某招
- 验证码破解的可能与不可能:用Python处理图片验证码的原理与限制
程序员威哥
python开发语言
前言验证码(CAPTCHA)是当前互联网防护机制中的重要组成部分,用于区分真人与自动程序。近年来,随着自动化技术发展,验证码破解成为自动化测试、爬虫及安全研究领域的热点。然而,从技术层面来看,验证码破解既有可行之处,也存在根本限制。本文将结合Python图像处理与机器学习技术,深度剖析图片验证码破解的原理、实践与瓶颈。一、验证码的分类及破解难点1.验证码类型字符型验证码纯数字、字母或混合,最常见。
- flask部署机器学习_如何开发端到端机器学习项目并使用Flask将其部署到Heroku
cumichun6193
大数据python机器学习人工智能深度学习
flask部署机器学习There'sonequestionIalwaysgetaskedregardingDataScience:关于数据科学,我经常被问到一个问题:WhatisthebestwaytomasterDataScience?Whatwillgetmehired?掌握数据科学的最佳方法是什么?什么会雇用我?Myanswerremainsconstant:Thereisnoalterna
- 人工智能赋能气象气候:从数据智能到预测创新的融合之路
慌ZHANG
人工智能人工智能
个人主页:慌ZHANG-CSDN博客期待您的关注一、引言:气象气候与AI的“天然耦合”气象与气候系统是典型的复杂、多尺度、强非线性的自然系统,其建模、分析与预测依赖庞大观测数据和高性能计算资源。传统方法以数值天气预报(NWP)与物理建模为核心,虽然取得重要成就,但也面临计算代价大、精度不足、长期预测偏差大等瓶颈。与此同时,人工智能(AI),尤其是以深度学习为代表的机器学习方法,近年来在图像识别、自
- 【机器学习|学习笔记】类别特征(Categorical Features)处理方法,附代码。
努力毕业的小土博^_^
机器学习学习笔记机器学习学习笔记神经网络人工智能深度学习
【机器学习|学习笔记】类别特征(CategoricalFeatures)处理方法,附代码。【机器学习|学习笔记】类别特征(CategoricalFeatures)处理方法,附代码。文章目录【机器学习|学习笔记】类别特征(CategoricalFeatures)处理方法,附代码。前言✅为什么要处理类别特征?原因1:大多数模型不能处理字符串原因2:避免“错误的顺序假设”原因3:方便模型泛化与特征交互✅
- Python中使用Graphviz绘制决策树图解
黃昱儒
本文还有配套的精品资源,点击获取简介:Graphviz是一款用于数据可视化和算法流程展示的图形绘制软件,特别适用于Python中绘制决策树和其他图形类型。本安装包包含Graphviz安装程序和配置指南,以及如何在Python中利用pydot库等第三方库进行图形绘制的详细步骤。通过配置环境变量和利用DOT语言,用户可以将决策树模型转换为可视化图形,加深对机器学习模型的理解和调试。1.Graphviz
- 深度学习前置知识全面解析:从机器学习到深度学习的进阶之路
一、引言:人工智能时代的核心技术在当今这个数据爆炸的时代,人工智能(AI)已经成为推动社会进步的核心技术之一。作为AI领域最重要的分支,深度学习(DeepLearning)在计算机视觉、自然语言处理、语音识别等领域取得了突破性进展,彻底改变了我们与机器交互的方式。本教案将从机器学习的基础知识出发,系统性地介绍深度学习的核心概念、数学基础、网络架构和训练方法,为读者构建完整的知识体系框架。无论你是刚
- 大数据开发高频面试题:Spark与MapReduce解析
被招网约司机的盯上了好几天实习了六个月,到期被通知不能转正。外包裁员让我去友商我该去吗?offer比较华为状态码浏览器插件嵌入式项目推荐2019秋招总结+云从语音算法面经+银行群面面经科大讯飞语音算法面经语音算法美团一面已挂科大讯飞智能语音方向值得去吗?语音算法oc科大讯飞语音算法二面荣耀一面语音算法面经,已挂荣耀_语音算法工程一面科大讯飞语音一面凉经8.18携程机器学习(语音方向)一面【vivo
- Python与Dlib库实现人脸技术实战
西域情歌
本文还有配套的精品资源,点击获取简介:本项目详细说明了如何使用Python结合Dlib库实现人脸检测、识别、数量检测和距离检测。利用Dlib提供的机器学习算法和计算机视觉功能,包括HOG特征检测、级联分类器、面部特征向量模型和关键点预测等,项目能够快速准确地在图像中检测和识别人脸。此外,还介绍了如何统计图像中的人脸数量以及如何计算人脸之间的距离。通过实际代码资源,开发者能够掌握实时人脸技术的应用,
- 【Python】已解决:Traceback (most recent call last): File “C:/python/kfc.py”, line 8, in KfcError: KFC Cra
屿小夏
pythonc语言开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- Orange3机器学习建模和可视化分析数据预处理、特征工程、算法训练
维度软件库
测试工具开源软件电脑
各位数据挖掘爱好者们!今天给你们介绍一款超厉害的开源软件——Orange3。它就像一个神奇的工具箱,你只要通过拖放组件就能完成机器学习建模和可视化分析,软件下载地址安装包它支持数据预处理、特征工程、算法训练和评估整个流程,就像一个贴心的管家,把数据挖掘的事儿全给你安排得明明白白!它还内置了箱线图、决策树这些可视化工具,能直观地把数据分布和模型结构展示出来,就像给你开了个透视眼,让数据一目了然!这软
- KNN(K-近邻算法)(上)--day05
扫把星133
机器学习python人工智能近邻算法算法
KNN(K-NearestNeighbors,K近邻算法)是一种用于分类和回归的非参数化方法。其基本思想是通过找出与新样本最接近的已标记数据中的K个最近邻居来进行预测或分类。注释:非参数化方法是指在统计学和机器学习中,不对数据分布做出严格假设(这些假设通常包括
- 蚁群算法原理与应用详解
本文还有配套的精品资源,点击获取简介:蚁群算法是一种基于蚂蚁寻找食物路径行为的优化算法,它能够有效解决包括旅行商问题、网络路由和多目标优化在内的复杂问题。该算法模拟蚂蚁释放信息素来找到最短路径的过程,通过模拟蚂蚁的行为,算法逐步优化选择路径。蚁群算法具有并行性和全局优化能力,但也面临早熟收敛和参数调整的挑战。它已成功应用于物流优化、通信网络、任务调度、机器学习、图像处理和生物医学等众多领域。1.蚁
- Python 解析 AI 在金融风控中的应用案例
浮世清欢ai
python人工智能开发语言
```htmlPython解析AI在金融风控中的应用案例Python解析AI在金融风控中的应用案例在当今快速发展的金融科技领域,人工智能(AI)的应用正在改变传统的金融风险管理方式。通过使用Python编程语言和各种机器学习库,金融机构能够更准确地识别潜在风险,提高决策效率。本文将探讨几个具体的AI在金融风控中的应用案例,并展示如何利用Python实现这些功能。案例一:信用评分模型信用评分是金融风
- 机器学习算法_支持向量机
一、支持向量机支持向量机只能做二分类任务SVM全称支持向量机,即寻找到一个超平面使样本分成两类,且间隔最大硬间隔:如果样本线性可分,在所有样本分类都正确的情况下,寻找最大间隔;如果出现异常值或样本线性不可分,此时硬间隔无法实现软间隔:允许部分样本,在最大间隔之内,甚至在错误的一边,寻找最大间隔;目标是尽可能保持间隔宽阔和限制间隔违例之间寻找良好的平衡惩罚系数:通过惩罚系数来控制这个平衡,C值越小,
- 深度探索:机器学习中的 条件生成对抗网络(Conditional GAN, CGAN)算法原理及其应用
目录1.引言与背景2.CGAN定理3.算法原理4.算法实现5.优缺点分析优点:缺点:6.案例应用7.对比与其他算法8.结论与展望1.引言与背景生成对抗网络(GenerativeAdversarialNetworks,GANs)作为一种深度学习框架,在无监督学习领域展现出强大的能力,特别在图像、音频、文本等复杂数据的生成任务中取得了显著成果。然而,原始GAN模型在生成过程中缺乏对生成样本特定属性的直
- GEE数据集:全球地下水生态系统 (GDEs)数据集(30m分辨率)
此星光明
GEE数据集专栏数据库人工智能gee地下水水数据集全球
目录地下水的全球生态系统(GDEs)简介代码代码链接APP链接结果引用许可网址推荐0代码在线构建地图应用机器学习地下水的全球生态系统(GDEs)简介地下水是最广泛的液态淡水来源,但它在支持多样化生态系统方面的关键作用却往往不被人们所认识。在许多地区,依赖地下水的生态系统(GDEs)的位置和范围在很大程度上仍不为人所知,导致保护措施不足。该数据集提供了一张高分辨率(约30米)的GDEs地图,揭示了全
- 农业物联网平台中的灌溉系统研究
sj52abcd
农业物联网和人工智能物联网数据分析python大数据毕业设计
研究目的本研究旨在开发一个基于Python语言的农业物联网平台,整合土壤墒情监测与精准灌溉系统,通过现代信息技术手段实现农业生产的智能化管理。系统将采用Python作为主要开发语言,结合MySQL数据库进行数据存储与管理,利用ECharts.js实现数据可视化展示,并引入机器学习和强化学习算法优化灌溉决策。具体目标包括:1)构建实时土壤墒情监测网络,通过物联网传感器采集土壤温湿度、电导率等关键参数
- [读论文] Towards Machine Learning for Placement and Routing in Chip Design: a Methodological Overview
SP FA
#EDA+AI机器学习人工智能
Abstract在现代芯片设计流程中,放置和布线是两个不可或缺且具有挑战性的NP-hard问题。与使用启发式算法或专家精心设计的算法的传统求解器相比,机器学习凭借其数据驱动的性质显示出了广阔的前景,它可以减少对知识和先验的依赖,并且通过其先进的计算范式具有更大的可扩展性(例如GPU加速的深度网络)。本调查首先介绍了基本的布局(Placement)和布线(Routing),并简要介绍了经典的无学习解
- 机器学习路径规划中的 net 和 netlist 分别是什么?
勤奋的大熊猫
MachineLearning机器学习人工智能自动寻路
机器学习路径规划中的net是什么?引言正文net含义netlist含义引言当我们使用机器学习训练自己的模型来进行自动寻路时,通常,我们会遇到一个名为net的词语,这里我们将对这个单词的意思进行解释。正文net含义net:中文翻译为网络,在机器学习中其中文应该翻译为连线任务。通常在连线任务中我们需要将给定的两个端点连接起来。比如给定的端点为:self.netlist=[('mmi:out1','mm
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D