用python实现rsa加密_用Python实现RSA加密算法

这学期开了一门网络安全课,应老师要求,最近要做RSA加密算法。前一篇文章中已经提到,我是用Python来实现的整个进程,而且速度上嘛,比用C实现的慢了很多。我还不清楚到底是寻找素数的算法存在问题,还是Python本身的问题。

关于RSA算法的讲解,最好的莫过于wikipedia上的RSA词条。里面已经非常详细地说明了,这里就不再赘述。整个算法中要用到的数学算法有:Extended Euclidean algorithm,Miller-Rabin primality test。当然,你还需要Modulo operation的知识。

整个算法最关键的是找到合适的P,Q,以及求D。前者尤为关键,它几乎决定了整个进程的运行速度。所以,找到一个搜索大素数的好算法是核心问题。关于求D,我并没有使用Extended Euclidean algorithm,而是用了蛮力求解,没关系,这影响不大,关键还是刚才说的那个。

寻找素数的算法我使用了Miller-Rabin primality test,参考了gmp库源代码中nextprime的实现。但速度上仍然远不如C的实现。详细代码如下:

!/usr/bin/env python

import random

import string

import math

import sys

DEBUG = False

def nextprime(n):

i = n + 1 - n%2

while not probably_prime(i):

i+=2

return i

#i = n + 1 - n%2

#m = 2*n

#while i 0):

r.append(n % 2)

n = n / 2

return r

def test(a, n):

“””

Returns:

- True, if n is complex.

- False, if n is probably prime.

"""

b = toBinary(n - 1)

d = 1

for i in xrange(len(b) - 1, -1, -1):

x = d

d = (d * d) % n

if d == 1 and x != 1 and x != n - 1:

return True

if b[i] == 1:

d = (d * a) % n

if d != 1:

return True # Complex

return False # Prime

def MillerRabin(n, s = 15):

“””

Returns:

-True, if n is probably prime. -False, if n is complex."""

for j in xrange(1, s + 1):

a = random.randint(1, n - 1)

if (test(a, n)):

return False # n is complex

return True # n is prime

def probably_prime(n):

return MillerRabin(n)

def gcd(m, n):

while n:

m, n = n, m % n

return m

def genkey(bits=100):

BIG_NUM = []

P_INT = 0

Q_INT = 0

global P, Q, X, N, D, E

for i in range(bits):

BIG_NUM.append(random.choice('0123456789'))

P_INT = int(''.join(BIG_NUM))

for i in range(bits):

BIG_NUM[i] = random.choice('0123456789')

Q_INT = int(''.join(BIG_NUM))

if DEBUG:

print "p=%d"%P_INT

print "q=%d"%Q_INT

P = nextprime(P_INT)

Q = nextprime(Q_INT)

if DEBUG:

print "next prime to p is %d"%P

print "next prime to q is %d"%Q

N = P*Q

if DEBUG:

print "n=%d"%N

X = (P-1)*(Q-1)

if DEBUG:

print "x=%d"%X

while True:

if gcd(X, E)==1:

break

E+=2

if DEBUG:

print "e=%d"%E

n = 1

while (n*X+1)%E!=0:

n+=1

D = (n*X+1)/E

if DEBUG:

print "d=%d"%D

def rsa_encrypt(msg):

enc = []

for c in msg:

enc.append(pow(ord(c), E, N))

return enc

def rsa_decrypt(cmsg):

dec = []

tmp = []

for ec in cmsg:

tmp.append(pow(ec, D, N))

for c in tmp:

dec.append(“%c”%c)

return dec

X = N = D = P = Q = 0

E= 65537

if name==”main“:

DEBUG = True

argc = len(sys.argv)

if argc==1:

genkey()

elif argc==2:

genkey(string.atoi(sys.argv[1]))

else:

sys.exit(-1)

msg = raw_input()

enc = rsa_encrypt(msg)

if DEBUG:

print enc

dec = rsa_decrypt(enc)

print ''.join(dec)

你可能感兴趣的:(用python实现rsa加密)