- VSCode安装及配置Go开发环境
weixin_42764969
Tools
全篇目录---我们不生产知识,我们只做知识的搬运工。1、VSCode的安装下载安装简单使用2、Go开发环境下载安装下载Go安装包配置GOPATH环境变量GOPATH目录介绍3、配置VSCode的Go开发环境3.1、安装Go开发扩展3.2、安装Go开发工具包解决方法一:有梯子就不怕墙高解决方法二:将package下载到本地解决方法三:设置镜像一劳永逸3.3第一个Go程序HelloWorld.本文参考
- 使用Redis实现分布式锁的技术详解
my1121716951
redis分布式数据库
使用Redis实现分布式锁的技术详解一、引言二、分布式锁的基本概念三、Redis实现分布式锁的原理1.SETNX命令2.SET命令的扩展参数3.Lua脚本保证原子性四、Redis实现分布式锁的步骤1.引入Redis依赖2.加锁实现3.释放锁实现4.设置锁过期时间五、代码演示1.引入依赖2.加锁与释放锁的工具类3.使用示例六、注意事项与优化1.死锁问题2.锁竞争与重试机制一、引言在分布式系统中,多个
- 使用Redis实现分布式锁的技术详解
QQ828929QQ
redis分布式数据库
使用Redis实现分布式锁的技术详解一、引言二、分布式锁的基本概念三、Redis实现分布式锁的原理1.SETNX命令2.SET命令的扩展参数3.Lua脚本保证原子性四、Redis实现分布式锁的步骤1.引入Redis依赖2.加锁实现3.释放锁实现4.设置锁过期时间五、代码演示1.引入依赖2.加锁与释放锁的工具类3.使用示例六、注意事项与优化1.死锁问题2.锁竞争与重试机制一、引言在分布式系统中,多个
- 蓝易云 - kubernetes介绍,什么是k8s,kubernetes概念,组件介绍
蓝易云
kubernetes容器云原生驱动开发开发语言
Kubernetes(常简称为K8s)是一个开源的容器编排和管理平台,用于自动化部署、扩展和管理容器化应用程序。Kubernetes的概念和组件包括:Pod:最小的可部署单位,可以包含一个或多个容器,共享网络和存储空间。ReplicaSet:用于维护指定数量的Pod副本,确保应用的可用性和弹性。Deployment:用于管理Pod的版本和更新,实现滚动升级和回滚等。Service:定义一组Pod的
- Sass (Scss) 与 Less 的区别与选择
智能编织者
sassscssless
Sass与Less的区别与选择1.语法差异2.特性与支持3.兼容性4.选择建议在前端开发中,CSS预处理器如Sass(SyntacticallyAwesomeStylesheets)和Less被广泛使用,它们通过引入变量、嵌套规则、混合、函数等特性,使CSS的开发过程更加高效和灵活。Sass和Less作为两大主流CSS预处理器,各自具有独特的优点和特性。本文将详细探讨Sass(特别是其语法扩展Sc
- 梯度下降法以及随机梯度下降法
HKkuaidou
人工智能深度学习pythonpytorch
梯度下降法就是在更新weight的时候,向函数值下降的最快方向进行更新,具体的原理我就不再写了,就是一个求偏导的过程,有高数基础的都能够很快的理解过程。我在我的github里面会一直更新自己学习pytorch的过程,地址为:https://github.com/00paning/Pytorch_Learning这里我直接展示一个简易实现的python代码,我们还是先看一下运行的效果图:相关pyth
- 白话设计模式之(53):迭代器模式——数据遍历的“百变魔方”
一杯年华@编程空间
白话设计模式设计模式迭代器模式
白话设计模式之(53):迭代器模式——数据遍历的“百变魔方”大家好!在软件开发的学习过程中,我们都在不断探索如何让代码更加高效、灵活且易于维护。设计模式作为编程领域的关键知识,为我们解决各种复杂问题提供了有力的工具。今天,咱们继续深入研究迭代器模式,它就像一个“百变魔方”,不仅能实现基本的数据遍历功能,还能通过各种扩展和变化,满足不同场景下的数据访问需求。希望通过这篇博客,能和大家一起更全面地理解
- pytorch实现cifar10多分类总结
L_pyu
人工智能pytorch分类
cifar-10简介:CIFAR-10是一个常用的图像分类数据集,每张图片都是3×32×32,3通道彩色图片,分辨率32×32。它包含了10个不同类别,每个类别有6000张图像,其中5000张用于训练,1000张用于测试。这10个类别分别为:飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车。CIFAR-10分类任务是将这些图像正确地分类到它们所属的类别中。对于这个任务,可以使用深度学习模型,如卷积
- VSCode SSHFS 扩展使用教程
史跃骏Erika
VSCodeSSHFS扩展使用教程vscode-sshfsExtensionforVisualStudioCode:FilesystemproviderusingSSH项目地址:https://gitcode.com/gh_mirrors/vs/vscode-sshfs1.项目介绍VSCodeSSHFS是一个用于VisualStudioCode的扩展,允许用户通过SSH协议将远程文件系统挂载为本地
- SpringBoot 自动装配
SilvertipSage
springboot后端java
SpringBoot自动装配:自动装配是Springboot框架的一个核心特性之一。SpringBoot的自动装配通过条件注解和自动配置类,根据应用需求自动配置组件,简化配置过程,提高开发效率不需要手动配置许多繁琐的细节,而是通过自动装配来简化配置过程好处:简化配置,减少了出错的可能性,提高了开发效率,提升了应用程序的可维护性和可扩展性。自动把第三方组件的bean加到IOC容器里,在SpringB
- DeepSeek面试——分词算法
mzgong
人工智能算法
DeepSeek-V3分词算法一、核心算法:字节级BPE(Byte-levelBPE,BBPE)DeepSeek-V3采用字节级BPE(BBPE)作为核心分词算法,这是对传统BPE(BytePairEncoding)算法的改进版本。其核心原理是将文本分解为字节(Byte)序列,通过统计高频相邻字节对的共现频率进行逐层合并,最终形成128K扩展词表。二、BBPE的核心优势1.多语言统一处理能力跨语言
- 【PyTorch】torch.nn.functional.log_softmax() 函数:计算 log(softmax),用于多分类任务
彬彬侠
PyTorch基础log_softmax多分类交叉熵损失分类pytorchpython深度学习
torch.nn.functional.log_softmaxtorch.nn.functional.log_softmax是PyTorch提供的用于计算log(softmax)的函数,通常用于多分类任务和计算交叉熵损失,可以提高数值稳定性并防止数值溢出。1.log_softmax的数学公式对于输入张量XXX,softmax计算如下:softmax(Xi)=eXi∑jeXj\text{softma
- 【PyTorch】torch.nn.functional.cross_entropy() 函数:分类任务的交叉熵损失函数
彬彬侠
PyTorch基础cross_entropy交叉熵损失函数分类pytorchpython深度学习
torch.nn.functional.cross_entropytorch.nn.functional.cross_entropy是PyTorch中用于分类任务的交叉熵损失函数,用于衡量预测概率分布与真实类别分布之间的差异,常用于多分类任务(multi-classclassification)。1.交叉熵损失的数学公式对于单个样本,交叉熵损失的计算公式为:L=−∑i=1Cyilog(yi^)\
- 图神经网络学习笔记—高级小批量处理(专题十四)
AI专题精讲
图神经网络入门到精通人工智能
小批量(mini-batch)的创建对于让深度学习模型的训练扩展到海量数据至关重要。与逐条处理样本不同,小批量将一组样本组合成一个统一的表示形式,从而可以高效地并行处理。在图像或语言领域,这一过程通常通过将每个样本缩放或填充为相同大小的形状来实现,然后将样本在一个额外的维度中分组。该维度的长度等于小批量中分组的样本数量,通常称为batch_size。由于图是能够容纳任意数量节点或边的最通用的数据结
- 每天五分钟玩转深度学习PyTorch:基于GoogLeNet完成CAFIR10分类
每天五分钟玩转人工智能
深度学习框架pytorch深度学习pytorch分类GoogLeNet人工智能CAFIR10
本文重点前面我们终于使用pytorch搭建了GoogLeNet,本文我们使用该网络模型解决一个实际问题,也就是使用它完成CAFIR10分类,其实就这些任务而言,我们只要搭建好模型,然后把数据喂进去就行了,其它的地方都是一样的,就是网络模型不一样。代码
- C++:std::vector常用函数及用法详解
湫兮之风
c++c++算法开发语言
std::vector是C++标准库中最常用的动态数组容器,提供了丰富的操作方法,支持动态扩展、插入、删除等操作。本文将详细介绍vector的常用函数及其用法,并配合代码示例说明。1.std::vector的基本使用在C++中,vector需要包含头文件:#include示例:#include#includeintmain(){std::vectorvec={1,2,3,4,5};for(intn
- 生成对抗网络优化医疗影像分析方法
智能计算研究中心
其他
内容概要生成对抗网络(GAN)在医疗影像分析中的应用正经历从理论验证到临床落地的关键转型。本研究通过整合联邦学习算法与动态数据增强技术,构建了跨机构医疗影像协同分析框架,在保证患者隐私的前提下实现了数据资源的有效扩展。值得注意的是,算法优化过程中采用的三阶段特征工程策略——包括基于注意力机制的特征选择、多尺度特征融合以及可解释性特征映射——使模型决策透明度提升约37.6%。临床实践表明,将联邦学习
- Mysql 主从复制架构
百里自来卷
mysql架构数据库
MySQL主从复制(Master-SlaveReplication)是一种常见的数据库架构,广泛用于提高数据库的可扩展性、读写分离以及数据备份和容灾恢复。主从复制架构中,一个MySQL实例作为主库(Master),负责处理所有的写操作,而一个或多个从库(Slave)从主库复制数据,并负责处理读操作。主库(Master):主库负责处理数据库的所有写操作(如INSERT、UPDATE和DELETE),
- 深度学习项目--基于DenseNet网络的“乳腺癌图像识别”,准确率90%+,pytorch复现
羊小猪~~
深度学习网络pytorch人工智能python机器学习分类
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊前言如果说最经典的神经网络,ResNet肯定是一个,从ResNet发布后,很多人做了修改,denseNet网络无疑是最成功的一个,它采用密集型连接,将通道数连接在一起;本文是基于上一篇复现DenseNet121模型,做一个乳腺癌图像识别,效果还行,准确率0.9+;CNN经典网络之“DenseNet”简介,源码研究与复现(pytorch):
- C# WPF 基础知识学习(一)
埃菲尔铁塔_CV算法
c#wpf学习人工智能图像处理计算机视觉
一、WPF简介WindowsPresentationFoundation(WPF)是微软推出的一款用于构建用户界面的框架,它为开发Windows桌面应用程序提供了统一的编程模型、语言和框架。WPF将用户界面的设计与业务逻辑分离开来,采用了XAML(可扩展应用程序标记语言)来描述界面元素,使得界面设计更加直观和灵活。与传统的WindowsForms相比,WPF在图形渲染、动画效果、数据绑定等方面具有
- 【QT教程】QT6硬件数据库编程 QT硬件数据库
QT性能优化QT原理源码QT界面美化
qtqt6.3qt5c++QT教程
QT6硬件数据库编程使用AI技术辅助生成QT界面美化视频课程QT性能优化视频课程QT原理与源码分析视频课程QTQMLC++扩展开发视频课程免费QT视频课程您可以看免费1000+个QT技术视频免费QT视频课程QT统计图和QT数据可视化视频免费看免费QT视频课程QT性能优化视频免费看免费QT视频课程QT界面美化视频免费看1QT6硬件数据库编程基础1.1QT6数据库引擎概述1.1.1QT6数据库引擎概述
- C# HashTable、HashSet、Dictionary
有诗亦有远方
C#Hash
哈希一、HashTable1.什么是哈希表2.哈希表的Key&Value(1)添加数据(2)“键值对”均是object类型(3)必须有Key键,且Key键不能重复。(4)乱序读取数据3.基本操作二、HashSet1.特点2.HashSet常用扩展方法3.HashSet与Linq操作三、Dictionary四、HashTable和Dictionary的区别一、HashTable哈希表(HashTab
- PyTorch 深度学习实战(13):Proximal Policy Optimization (PPO) 算法
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们介绍了Actor-Critic算法,并使用它解决了CartPole问题。本文将深入探讨ProximalPolicyOptimization(PPO)算法,这是一种更稳定、更高效的策略优化方法。我们将使用PyTorch实现PPO算法,并应用于经典的CartPole问题。一、PPO算法基础PPO是OpenAI提出的一种强化学习算法,旨在解决策略梯度方法中的训练不稳定问题。PPO通过
- 机器学习(二) 本文(2.5万字) | KNN算法原理及Python复现 |
小酒馆燃着灯
机器学习算法k近邻算法
文章目录一KNN算法原理二KNN三要素三机器学习中标准化四KNN分类预测规则五KNN回归预测规则六KNN算法实现方式七KDTree7.1构造KDtree7.2KDtree查找最近邻八KNN特点九KNN算法实现案例一案例二1.机器学习2.深度学习与目标检测3.YOLOv54.YOLOv5改进5.YOLOv8及其改进6.Python与PyTorch7.工具8.小知识点9.杂记一KNN算法原理K近邻分类
- CCF认证-202409-02 | 字符串变换
@Mr.stone
算法动态规划线性代数数据结构
题目描述本题涉及字符包括大小写字母(A-Z和a-z)、数字(0-9)和空格共63种。在这个字符集合上,小P定义了一个字符替换函数f(ch),表示将字符ch替换为f(ch)。例如f(a)=b表示将a替换为b,f(b)=0表示将b替换为0。进而可以将其扩展为字符串变换函数F(s),表示对字符串s进行变换,将s中每个字符ch都替换为f(ch)。字符替换函数f可表示为n个字符对(ch1,ch2),即f(c
- 示例:WPF中绑定枚举到ComboBox的方式
He BianGu
WPFwpf
一、目的:在开发过程中,经常会需要把枚举绑定到ComboxBox下拉列表中,其实方法有很多,这里面通过MarkupExtension扩展GetEnumSourceExtension去绑定到列表二、实现定义GetEnumSourceExtension类publicclassGetEnumSourceExtension:System.Windows.Markup.MarkupExtension{pri
- 【大模型LLM面试合集】分布式训练_总结
X.AI666
大模型LLM面试合集面试分布式人工智能语言模型
9.总结1.数据并行数据并行,由于其原理相对比较简单,是目前使用最广泛的分布式并行技术。数据并行不仅仅指对训练的数据并行操作,还可以对网络模型梯度、权重参数、优化器状态等数据进行并行。我们首先以PyTorch数据并行的发展(DataParallel、DistributedDataParallel、FullyShardedDataParallel)为主线进行讲述了数据并行的技术原理。同时,也简述了D
- 【vLLM 学习】使用 TPU 安装
HyperAI超神经
vLLM学习人工智能vLLM深度学习TPU机器学习教程
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/vLLM使用PyTorchXLA支持GoogleCloudTPU。依赖环境GoogleCloudTPUVM(单主机和多主机)TPU版本:v5e、v5p、v4Python:3.10安装选项:href=“https://v
- SpringBoot项目集成分布式任务调度平台XXL-JOB
樱花语
分布式开发SpringBootXXL-JOB
一、概述XXL-JOB是一个轻量级分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。二、特性1、简单:支持通过Web页面对任务进行CRUD操作,操作简单,一分钟上手;2、动态:支持动态修改任务状态、启动/停止任务,以及终止运行中任务,即时生效;3、调度中心HA(中心式):调度采用中心式设计,“调度中心”自研调度组件并支持集群部
- 责任链模式的C++实现示例
香菇滑稽之谈
C++笔记责任链模式c++开发语言设计模式
核心思想责任链模式是一种行为设计模式,允许多个对象都有机会处理请求,从而避免请求的发送者与接收者之间的耦合。请求沿着处理链传递,直到某个对象处理它为止。解决的问题解耦请求发送者与处理者:请求的发送者无需知道具体由哪个对象处理请求。动态分配责任:可以在运行时动态调整处理链,灵活添加或移除处理者。避免硬编码:避免将请求处理逻辑硬编码在某个类中,提高代码的可扩展性和可维护性。使用场景多级审批流程:如请假
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri