实验五 前馈神经网络(1)二分类任务

目录

4.1 神经元

4.1.1 净活性值

4.1.2 激活函数

4.1.2.1 Sigmoid 型函数

4.1.2.2 ReLU型函数

4.2 基于前馈神经网络的二分类任务

4.2.1 数据集构建

4.2.2 模型构建

4.2.2.1 线性层算子

4.2.2.2 Logistic算子(激活函数)

4.2.2.3 层的串行组合

4.2.3 损失函数

4.2.4 模型优化

4.2.4.1 反向传播算法

4.2.4.2 损失函数

4.2.4.3 Logistic算子

4.2.4.4 线性层

4.2.4.5 整个网络

4.2.4.6 优化器

4.2.5 完善Runner类:RunnerV2_1

4.2.6 模型训练

4.2.7 性能评价


4.1 神经元

4.1.1 净活性值

使用pytorch计算一组输入的净活性值z

净活性值z经过一个非线性函数f(·)后,得到神经元的活性值a

实验五 前馈神经网络(1)二分类任务_第1张图片

使用pytorch计算一组输入的净活性值:

import torch
#2个特征数为5的样本
X=torch.rand(size=[2,5])
#含有5个参数的权重向量
w=torch.rand(size=[5,1])
#偏置项
b=torch.rand(size=[1,1])
#使用'torch.matmul'实现矩阵相乘
z=torch.matmul(X,w)+b
print('input X:',X)
print('weight w:',w,'\nbias b:',b)
print('output z:',z)

结果:

实验五 前馈神经网络(1)二分类任务_第2张图片

说明

在飞桨中,可以使用nn.Linear完成输入张量的上述变换。

【思考题】加权相加仿射变换之间有什么区别和联系?

区别:加权相加可以看成是线性映射,而仿射变换是平移和线性映射的复合。

 联系:仿射变换包含加权相加。

4.1.2 激活函数

激活函数通常为非线性函数,可以增强神经网络的表示能力和学习能力。

常用的激活函数有S型函数和ReLU函数。

4.1.2.1 Sigmoid 型函数

常用的 Sigmoid 型函数有 Logistic 函数和 Tanh 函数。

1.使用python实现并可视化“Logistic函数、Tanh函数”
2.在飞桨中,可以通过调用paddle.nn.functional.sigmoid和paddle.nn.functional.tanh实现对张量的Logistic和Tanh计算。在pytorch中找到相应函数并测试。

import torch
import matplotlib.pyplot as plt

# Logistic函数
def logistic(z):
    return 1.0 / (1.0 + torch.exp(-z))

# Tanh函数
def tanh(z):
    return (torch.exp(z) - torch.exp(-z)) / (torch.exp(z) + torch.exp(-z))

# 在[-10,10]的范围内生成10000个输入值,用于绘制函数曲线
z = torch.linspace(-10, 10, 10000)

plt.figure()
plt.plot(z.tolist(), logistic(z).tolist(), color='#e4007f', label="Logistic Function")
plt.plot(z.tolist(), tanh(z).tolist(), color='#f19ec2', linestyle ='--', label="Tanh Function")

ax = plt.gca() # 获取轴,默认有4个
# 隐藏两个轴,通过把颜色设置成none
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
# 调整坐标轴位置
ax.spines['left'].set_position(('data',0))
ax.spines['bottom'].set_position(('data',0))
plt.legend(loc='lower right', fontsize='large')

plt.savefig('fw-logistic-tanh.pdf')
plt.show()

实验五 前馈神经网络(1)二分类任务_第3张图片

4.1.2.2 ReLU型函数

常见的ReLU函数有ReLU和带泄露的ReLU(Leaky ReLU)

1.使用python实现并可视化可视化“ReLU、带泄露的ReLU的函数”
2.在飞桨中,可以通过调用paddle.nn.functional.relu和paddle.nn.functional.leaky_relu完成ReLU与带泄露的ReLU的计算。在pytorch中找到相应函数并测试。

import torch
import matplotlib.pyplot as plt
# ReLU
def relu(z):
    return torch.maximum(z,torch.tensor(0.))

# 带泄露的ReLU
def leaky_relu(z, negative_slope=0.1):
    a1 = (torch.tensor(z > 0) * z)
    a2 = (torch.tensor(z <= 0) * (negative_slope * z))
    return a1 + a2

# 在[-10,10]的范围内生成一系列的输入值,用于绘制relu、leaky_relu的函数曲线
z = torch.linspace(-10, 10, 10000)

plt.figure()
plt.plot(z.tolist(), relu(z).tolist(), color="#e4007f", label="ReLU Function")
plt.plot(z.tolist(), leaky_relu(z).tolist(), color="#f19ec2", linestyle="--", label="LeakyReLU Function")

ax = plt.gca()
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.spines['left'].set_position(('data',0))
ax.spines['bottom'].set_position(('data',0))
plt.legend(loc='upper left', fontsize='large')
plt.savefig('fw-relu-leakyrelu.pdf')
plt.show()

实验五 前馈神经网络(1)二分类任务_第4张图片

4.2 基于前馈神经网络的二分类任务

实验五 前馈神经网络(1)二分类任务_第5张图片

4.2.1 数据集构建

使用第3.1.1节中构建的二分类数据集:Moon1000数据集,其中训练集640条、验证集160条、测试集200条。该数据集的数据是从两个带噪音的弯月形状数据分布中采样得到,每个样本包含2个特征。

import torch
import math
def make_moons(n_samples=1000, shuffle=True, noise=None):
    '''
     生成带噪音的弯月形状数据
    :param n_samples: 数据量大小,数据类型为int
    :param shuffle: 是否打乱数据,数据类型为bool
    :param noise: 以多大程度增加噪声,数据类型为None或float
    :return: X:特征数据,shape=[n_samples,2]
    y:标签数据,shape=[n_samples]
    '''
    n_samples_out = n_samples // 2
    n_samples_in = n_samples - n_samples_out

    # 采集第1类数据,特征为(x,y)
    # 使用‘torch.linspace'在0到pi上均匀取n_samples_out个值
    # 使用'torch.cos'计算上述取值的余弦值作为特征1,使用'torch.sin'计算上述取值的正弦值作为特征2
    outer_circ_x = torch.cos(torch.linspace(0, math.pi, n_samples_out))
    outer_circ_y = torch.sin(torch.linspace(0, math.pi, n_samples_out))

    inner_circ_x = 1 - torch.cos(torch.linspace(0, math.pi, n_samples_in))
    inner_circ_y = 0.5 - torch.sin(torch.linspace(0, math.pi, n_samples_in))

    print('outer_circ_x.shape:', outer_circ_x.shape, 'outer_circ_y.shape:', outer_circ_y.shape)
    print('inner_circ_x.shape:', inner_circ_x.shape, 'inner_circ_y.shape:', inner_circ_y.shape)

    # 使用'torch.concat'将两类数据的特征1和特征2分别延维度0拼接在一起,得到全部特征1和特征2
    # 使用'torch.stack'将两类特征延维度1堆叠在一起
    X = torch.stack(
        [torch.cat([outer_circ_x, inner_circ_x]),
         torch.cat([outer_circ_y, inner_circ_y])],
        dim=1
    )
    print('after concat shape:', torch.cat([outer_circ_x,
                                            inner_circ_x]).shape)
    print('X shape:', X.shape)

    # 使用'torch.zeros'将第一类数据的标签设为0
    # 使用'torch.ones'将第一类数据的标签设为1
    y = torch.cat(
        [torch.zeros(size=[n_samples_out]), torch.ones(size=[n_samples_in])]
    )
    print('y shape:', y.shape)
    # 如果shuffle为True,将所有数据打乱
    if shuffle:
        # 使用'torch.randperm'生成一个数值在0到X.shape[0],随机排列的一维Tensor做索引值,用于打乱数据
        idx = torch.randperm(X.shape[0])
        X = X[idx]
        y = y[idx]

    # 如果noise不为None,则给特征值加入噪声
    if noise is not None:
        # 使用'torch.normal'生成符合正态分布的随机Tensor作为噪声,并加到原始特征上
        X += torch.normal(mean=0.0, std=noise, size=X.shape)

    return X, y

n_samples = 1000
X, y = make_moons(n_samples=n_samples, shuffle=True, noise=0.2)

num_train = 640
num_dev = 160
num_test = 200

X_train, y_train = X[:num_train], y[:num_train]
X_dev, y_dev = X[num_train:num_train + num_dev], y[num_train:num_train + num_dev]
X_test, y_test = X[num_train + num_dev:], y[num_train + num_dev:]

y_train = y_train.reshape([-1,1])
y_dev = y_dev.reshape([-1,1])
y_test = y_test.reshape([-1,1])
plt.figure(figsize=(5,5))
plt.scatter(x=X[:, 0].tolist(), y=X[:, 1].tolist(), marker='*', c=y.tolist())
plt.xlim(-3,4)
plt.ylim(-3,4)
plt.savefig('linear-dataset-vis.pdf')
plt.show()

结果:

实验五 前馈神经网络(1)二分类任务_第6张图片

实验五 前馈神经网络(1)二分类任务_第7张图片

4.2.2 模型构建

为了更高效的构建前馈神经网络,我们先定义每一层的算子,然后再通过算子组合构建整个前馈神经网络。

4.2.2.1 线性层算子

实验五 前馈神经网络(1)二分类任务_第8张图片

公式对应一个线性层算子,权重参数采用默认的随机初始化,偏置采用默认的零初始化。 

# 实现线性层算子
class Linear(Op):
    def __init__(self, input_size, output_size, name, weight_init=torch.randn, bias_init=torch.zeros):
        """
        输入:
            - input_size:输入数据维度
            - output_size:输出数据维度
            - name:算子名称
            - weight_init:权重初始化方式,默认使用'paddle.standard_normal'进行标准正态分布初始化
            - bias_init:偏置初始化方式,默认使用全0初始化
        """

        self.params = {}
        # 初始化权重
        self.params['W'] = weight_init(size=[input_size, output_size])
        # 初始化偏置
        self.params['b'] = bias_init(size=[1, output_size])
        self.inputs = None

        self.name = name

    def forward(self, inputs):
        """
        输入:
            - inputs:size=[N,input_size], N是样本数量
        输出:
            - outputs:预测值,size=[N,output_size]
        """
        self.inputs = inputs

        outputs = torch.matmul(self.inputs, self.params['W']) + self.params['b']
        return outputs

4.2.2.2 Logistic算子(激活函数)

采用Logistic函数来作为公式中的激活函数。这里也将Logistic函数实现一个算子 

class Logistic(Op):
    def __init__(self):
        self.inputs = None
        self.outputs = None

    def forward(self, inputs):
        """
        输入:
            - inputs: shape=[N,D]
        输出:
            - outputs:shape=[N,D]
        """
        outputs = 1.0 / (1.0 + torch.exp(-inputs))
        self.outputs = outputs
        return outputs

4.2.2.3 层的串行组合

实现一个两层的用于二分类任务的前馈神经网络,选用Logistic作为激活函数,可以利用上面实现的线性层和激活函数算子来组装

# 实现一个两层前馈神经网络
class Model_MLP_L2(Op):
    def __init__(self, input_size, hidden_size, output_size):
        """
        输入:
            - input_size:输入维度
            - hidden_size:隐藏层神经元数量
            - output_size:输出维度
        """
        self.fc1 = Linear(input_size, hidden_size, name="fc1")
        self.act_fn1 = Logistic()
        self.fc2 = Linear(hidden_size, output_size, name="fc2")
        self.act_fn2 = Logistic()

    def __call__(self, X):
        return self.forward(X)

    def forward(self, X):
        """
        输入:
            - X:shape=[N,input_size], N是样本数量
        输出:
            - a2:预测值,shape=[N,output_size]
        """
        z1 = self.fc1(X)
        a1 = self.act_fn1(z1)
        z2 = self.fc2(a1)
        a2 = self.act_fn2(z2)
        return a2

实例化一个两层的前馈网络,令其输入层维度为5,隐藏层维度为10,输出层维度为1。
并随机生成一条长度为5的数据输入两层神经网络,观察输出结果。

# 实例化模型
model = Model_MLP_L2(input_size=5, hidden_size=10, output_size=1)
# 随机生成1条长度为5的数据
X = torch.rand(size=[1, 5])
result = model(X)
print ("result: ", result)

结果:

4.2.3 损失函数

二分类交叉熵损失函数见第三章

# 实现交叉熵损失函数
class BinaryCrossEntropyLoss(op.Op):
    def __init__(self):
        self.predicts = None
        self.labels = None
        self.num = None
 
    def __call__(self, predicts, labels):
        return self.forward(predicts, labels)
 
    def forward(self, predicts, labels):
        self.predicts = predicts
        self.labels = labels
        self.num = self.predicts.shape[0]
        loss = -1. / self.num * (torch.matmul(self.labels.t(), torch.log(self.predicts)) + torch.matmul((1-self.labels.t()), torch.log(1-self.predicts)))
        loss = torch.squeeze(loss, axis=1)
        return loss

4.2.4 模型优化

神经网络的层数通常比较深,其梯度计算和上一章中的线性分类模型的不同的点在于:

线性模型通常比较简单可以直接计算梯度,而神经网络相当于一个复合函数,需要利用链式法则进行反向传播来计算梯度。

4.2.4.1 反向传播算法

前馈神经网络的参数梯度通常使用误差反向传播算法来计算。使用误差反向传播算法的前馈神经网络训练过程可以分为以下三步:

  1. 前馈计算每一层的净活性值Z(l)Z(l)和激活值A(l)A(l),直到最后一层;
  2. 反向传播计算每一层的误差项δ(l)=∂R∂Z(l)δ(l)=∂R∂Z(l);
  3. 计算每一层参数的梯度,并更新参数。

在上面实现算子的基础上,来实现误差反向传播算法。在上面的三个步骤中,

第1步是前向计算,可以利用算子的forward()方法来实现;
第2步是反向计算梯度,可以利用算子的backward()方法来实现;
第3步中的计算参数梯度也放到backward()中实现,更新参数放到另外的优化器中专门进行。

这样,在模型训练过程中,我们首先执行模型的forward(),再执行模型的backward(),就得到了所有参数的梯度,之后再利用优化器迭代更新参数。

以这我们这节中构建的两层全连接前馈神经网络Model_MLP_L2为例,下图给出了其前向和反向计算过程:

实验五 前馈神经网络(1)二分类任务_第9张图片

 下面我们按照反向的梯度传播顺序,为每个算子添加backward()方法,并在其中实现每一层参数的梯度的计算。

4.2.4.2 损失函数

二分类交叉熵损失函数

实现损失函数的backward()

# 实现交叉熵损失函数
class BinaryCrossEntropyLoss(Op):
    def __init__(self, model):
        self.predicts = None
        self.labels = None
        self.num = None

        self.model = model

    def __call__(self, predicts, labels):
        return self.forward(predicts, labels)

    def forward(self, predicts, labels):
        """
        输入:
            - predicts:预测值,shape=[N, 1],N为样本数量
            - labels:真实标签,shape=[N, 1]
        输出:
            - 损失值:shape=[1]
        """
        self.predicts = predicts
        self.labels = labels
        self.num = self.predicts.shape[0]
        loss = -1. / self.num * (torch.matmul(self.labels.t(), torch.log(self.predicts))
                                 + torch.matmul((1 - self.labels.t()), torch.log(1 - self.predicts)))

        loss = torch.squeeze(loss, axis=1)
        return loss

    def backward(self):
        # 计算损失函数对模型预测的导数
        loss_grad_predicts = -1.0 * (self.labels / self.predicts -
                                     (1 - self.labels) / (1 - self.predicts)) / self.num

        # 梯度反向传播
        self.model.backward(loss_grad_predicts)

4.2.4.3 Logistic算子

为Logistic算子增加反向函数

class Logistic(Op):
    def __init__(self):
        self.inputs = None
        self.outputs = None
        self.params = None

    def forward(self, inputs):
        outputs = 1.0 / (1.0 + torch.exp(-inputs))
        self.outputs = outputs
        return outputs

    def backward(self, grads):
        # 计算Logistic激活函数对输入的导数
        outputs_grad_inputs = torch.multiply(self.outputs, (1.0 - self.outputs))
        return torch.multiply(grads,outputs_grad_inputs)

4.2.4.4 线性层

线性层输入的梯度

计算线性层参数的梯度

class Linear(Op):
    def __init__(self, input_size, output_size, name, weight_init=torch.randn, bias_init=torch.zeros):
        self.params = {}
        self.params['W'] = weight_init(size=[input_size, output_size])
        self.params['b'] = bias_init(size=[1, output_size])

        self.inputs = None
        self.grads = {}

        self.name = name

    def forward(self, inputs):
        self.inputs = inputs
        outputs = torch.matmul(self.inputs, self.params['W']) + self.params['b']
        return outputs

    def backward(self, grads):
        """
        输入:
            - grads:损失函数对当前层输出的导数
        输出:
            - 损失函数对当前层输入的导数
        """
        self.grads['W'] = torch.matmul(self.inputs.T, grads)
        self.grads['b'] = torch.sum(grads, axis=0)

        # 线性层输入的梯度
        return torch.matmul(grads, self.params['W'].T)

4.2.4.5 整个网络

实现完整的两层神经网络的前向和反向计算

class Model_MLP_L2(Op):
    def __init__(self, input_size, hidden_size, output_size):
        # 线性层
        self.fc1 = Linear(input_size, hidden_size, name="fc1")
        # Logistic激活函数层
        self.act_fn1 = Logistic()
        self.fc2 = Linear(hidden_size, output_size, name="fc2")
        self.act_fn2 = Logistic()

        self.layers = [self.fc1, self.act_fn1, self.fc2, self.act_fn2]

    def __call__(self, X):
        return self.forward(X)

    # 前向计算
    def forward(self, X):
        z1 = self.fc1(X)
        a1 = self.act_fn1(z1)
        z2 = self.fc2(a1)
        a2 = self.act_fn2(z2)
        return a2
        
    # 反向计算
    def backward(self, loss_grad_a2):
        loss_grad_z2 = self.act_fn2.backward(loss_grad_a2)
        loss_grad_a1 = self.fc2.backward(loss_grad_z2)
        loss_grad_z1 = self.act_fn1.backward(loss_grad_a1)
        loss_grad_inputs = self.fc1.backward(loss_grad_z1)

4.2.4.6 优化器

在计算好神经网络参数的梯度之后,我们将梯度下降法中参数的更新过程实现在优化器中。

与第3章中实现的梯度下降优化器SimpleBatchGD不同的是,此处的优化器需要遍历每层,对每层的参数分别做更新。

class Optimizer(object):
    def __init__(self, init_lr, model):
        """
        优化器类初始化
        """
        #初始化学习率,用于参数更新的计算
        self.init_lr = init_lr
        #指定优化器需要优化的模型
        self.model = model

    def step(self):
        """
        定义每次迭代如何更新参数
        """
        pass


class BatchGD(Optimizer):
    def __init__(self, init_lr, model):
        super(BatchGD, self).__init__(init_lr=init_lr, model=model)

    def step(self):
        # 参数更新
        for layer in self.model.layers: # 遍历所有层
            if isinstance(layer.params, dict):
                for key in layer.params.keys():
                    layer.params[key] = layer.params[key] - self.init_lr * layer.grads[key]

4.2.5 完善Runner类:RunnerV2_1

  1. 支持自定义算子的梯度计算,在训练过程中调用self.loss_fn.backward()从损失函数开始反向计算梯度;
  2. 每层的模型保存和加载,将每一层的参数分别进行保存和加载。
import os

class RunnerV2_1(object):
    def __init__(self, model, optimizer, metric, loss_fn, **kwargs):
        self.model = model
        self.optimizer = optimizer
        self.loss_fn = loss_fn
        self.metric = metric

        # 记录训练过程中的评估指标变化情况
        self.train_scores = []
        self.dev_scores = []

        # 记录训练过程中的评价指标变化情况
        self.train_loss = []
        self.dev_loss = []

    def train(self, train_set, dev_set, **kwargs):
        # 传入训练轮数,如果没有传入值则默认为0
        num_epochs = kwargs.get("num_epochs", 0)
        # 传入log打印频率,如果没有传入值则默认为100
        log_epochs = kwargs.get("log_epochs", 100)

        # 传入模型保存路径
        save_dir = kwargs.get("save_dir", None)

        # 记录全局最优指标
        best_score = 0
        # 进行num_epochs轮训练
        for epoch in range(num_epochs):
            X, y = train_set
            # 获取模型预测
            logits = self.model(X)
            # 计算交叉熵损失
            trn_loss = self.loss_fn(logits, y)  # return a tensor

            self.train_loss.append(trn_loss.item())
            # 计算评估指标
            trn_score = self.metric(logits, y).item()
            self.train_scores.append(trn_score)

            self.loss_fn.backward()

            # 参数更新
            self.optimizer.step()

            dev_score, dev_loss = self.evaluate(dev_set)
            # 如果当前指标为最优指标,保存该模型
            if dev_score > best_score:
                print(f"[Evaluate] best accuracy performence has been updated: {best_score:.5f} --> {dev_score:.5f}")
                best_score = dev_score
                if save_dir:
                    self.save_model(save_dir)

            if log_epochs and epoch % log_epochs == 0:
                print(f"[Train] epoch: {epoch}/{num_epochs}, loss: {trn_loss.item()}")

    def evaluate(self, data_set):
        X, y = data_set
        # 计算模型输出
        logits = self.model(X)
        # 计算损失函数
        loss = self.loss_fn(logits, y).item()
        self.dev_loss.append(loss)
        # 计算评估指标
        score = self.metric(logits, y).item()
        self.dev_scores.append(score)
        return score, loss

    def predict(self, X):
        return self.model(X)

    def save_model(self, save_dir):
        # 对模型每层参数分别进行保存,保存文件名称与该层名称相同
        for layer in self.model.layers:  # 遍历所有层
            if isinstance(layer.params, dict):
                torch.save(layer.params, os.path.join(save_dir, layer.name + ".pdparams"))

    def load_model(self, model_dir):
        # 获取所有层参数名称和保存路径之间的对应关系
        model_file_names = os.listdir(model_dir)
        name_file_dict = {}
        for file_name in model_file_names:
            name = file_name.replace(".pdparams", "")
            name_file_dict[name] = os.path.join(model_dir, file_name)

        # 加载每层参数
        for layer in self.model.layers:  # 遍历所有层
            if isinstance(layer.params, dict):
                name = layer.name
                file_path = name_file_dict[name]
                layer.params = torch.load(file_path)

4.2.6 模型训练

使用训练集和验证集进行模型训练,共训练2000个epoch。评价指标为accuracy

torch.manual_seed(123)
epoch_num = 1000
model_saved_dir = "model"
# 输入层维度为2
input_size = 2
# 隐藏层维度为5
hidden_size = 5
# 输出层维度为1
output_size = 1
# 定义网络
model = Model_MLP_L2(input_size=input_size, hidden_size=hidden_size, output_size=output_size)
# 损失函数
loss_fn = BinaryCrossEntropyLoss(model)
# 优化器
learning_rate = 0.2
optimizer = BatchGD(learning_rate, model)
# 评价方法
metric = accuracy
# 实例化RunnerV2_1类,并传入训练配置
runner = RunnerV2_1(model, optimizer, metric, loss_fn)
runner.train([X_train, y_train], [X_dev, y_dev], num_epochs=epoch_num, log_epochs=50, save_dir=model_saved_dir)

 运行结果:

实验五 前馈神经网络(1)二分类任务_第10张图片

  可视化观察训练集与验证集的损失函数变化情况。

# 打印训练集和验证集的损失
plt.figure()
plt.plot(range(epoch_num), runner.train_loss, color="red", label="Train loss")
plt.plot(range(epoch_num), runner.dev_loss, color="blue", linestyle='--', label="Dev loss")
plt.xlabel("epoch", fontsize='large')
plt.ylabel("loss", fontsize='large')
plt.legend(fontsize='x-large')
plt.savefig('fw-loss2.pdf')
plt.show()
#加载训练好的模型
runner.load_model(model_saved_dir)
# 在测试集上对模型进行评价
score, loss = runner.evaluate([X_test, y_test])

实验五 前馈神经网络(1)二分类任务_第11张图片

4.2.7 性能评价

使用测试集对训练中的最优模型进行评价,观察模型的评价指标。

# 加载训练好的模型
runner.load_model(model_saved_dir)
# 在测试集上对模型进行评价
score, loss = runner.evaluate([X_test, y_test])
print("[Test] score/loss: {:.4f}/{:.4f}".format(score, loss))

结果:

[Test] score/loss: 0.8950/0.2498

从结果来看,模型在测试集上取得了较高的准确率。

下面对结果进行可视化:

import math
 
x1, x2 = torch.meshgrid(torch.linspace(-math.pi, math.pi, 200), torch.linspace(-math.pi, math.pi, 200), indexing='ij')
x = torch.stack([torch.flatten(x1), torch.flatten(x2)], dim=1)
 
# 预测对应类别
y = runner.predict(x)
y = torch.squeeze((y >= 0.5).to(torch.float32), dim=-1)
 
# 绘制类别区域
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(x[:, 0].tolist(), x[:, 1].tolist(), c=y.tolist(), cmap=plt.cm.Spectral)
 
plt.scatter(X_train[:, 0].tolist(), X_train[:, 1].tolist(), marker='*', c=torch.squeeze(y_train, dim=-1).tolist())
plt.scatter(X_dev[:, 0].tolist(), X_dev[:, 1].tolist(), marker='*', c=torch.squeeze(y_dev, dim=-1).tolist())
plt.scatter(X_test[:, 0].tolist(), X_test[:, 1].tolist(), marker='*', c=torch.squeeze(y_test, dim=-1).tolist())
plt.show()

结果:

实验五 前馈神经网络(1)二分类任务_第12张图片

 【思考题】对比

3.1 基于Logistic回归二分类任务 4.2 基于前馈神经网络二分类任务

谈谈自己的看法

1、神经网络比Logisitc回归复杂,但越复杂的不一定是拟合效果最好的,Logsitc做事比神经网络误差更低。
2、Logistic回归的正确率受随机误差大小和变量个数的影响大,前馈神经网络的正确率受样本数量的影响大。

总结:

本次实验回顾了神经网络的净活性值、激活函数等内容,以及基于前馈神经网络的二分类任务中弯月数据集的构建,了解到在一定范围内noise值越小弯月形状越明显,以及前馈神经网络模型的构建。

参考:

https://blog.csdn.net/m0_57215376/article/details/127040349

https://blog.csdn.net/qq_51698536/article/details/127049277?spm=1001.2014.3001.5502

https://blog.csdn.net/weixin_53651790/article/details/127048382?spm=1001.2014.3001.5502

你可能感兴趣的:(神经网络,分类,算法)