- Python 函数魔法书:基础、范例、避坑、测验与项目实战
李智 - 重庆
Python精讲精练-从入门到实战python经验分享编程技巧编程实战水平考试
Python函数魔法书:基础、范例、避坑、测验与项目实战内容简介本系列文章是为Python3学习者精心设计的一套全面、实用的学习指南,旨在帮助读者从基础入门到项目实战,全面提升编程能力。文章结构由5个版块组成,内容层层递进,逻辑清晰。基础速通:n个浓缩提炼的核心知识点,夯实编程基础;经典范例:10个贴近实际的应用场景,深入理解Python3的编程技巧和应用方法;避坑宝典:10个典型错误解析,提供解
- DeepSeek--通向通用人工智能的深度探索者
油泼辣子多加
专业名词解释人工智能
一、词源与全称“DeepSeek"由"Deep”(深度)与"Seek"(探索)组合而成,中文译名为"深度求索"。其全称为"深度求索人工智能基础技术研究有限公司",英文对应"DeepSeekArtificialIntelligenceResearchInstitute"。这一命名体现了企业对深度学习技术与未知领域持续探索的双重追求。二、发展历程初创期(2023)公司成立于中国杭州,创始团队汇聚了来自
- linux git clone出现fatal: unable to access Failed to connect to github.com port 443: Timed out解决方案
herosunly
C/C++/Linux解决方案linuxgitgithubtimeoutport443
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了linuxgitclone出现fatal:unabletoaccessF
- 人脸识别的经典深度学习方法
明初啥都能学会
深度学习人工智能
人脸识别的经典深度学习方法引言1.卷积神经网络(CNN)1.1LeNet1.2AlexNet1.3VGGNet1.4ResNet2.人脸检测2.1Viola-Jones算法2.2基于深度学习的人脸检测3.人脸特征提取3.1主成分分析(PCA)3.2人脸对齐3.2.1基于特征点的对齐3.2.2基于深度学习的对齐4.人脸识别模型4.1传统机器学习方法4.2基于深度学习的方法5.公式解读5.1卷积运算5
- 基于深度学习的遥感目标检测系统:UI界面、R-CNN模型与数据集准备
2025年数学建模美赛
R-CNN检测系统人工智能深度学习r语言cnnpythonui目标检测
一、引言遥感图像中的目标检测在很多领域,如环境监测、土地利用、城市规划、农业资源监测等方面有着广泛应用。遥感图像具有高分辨率和丰富的空间信息,但同时也带来了目标检测中的许多挑战,特别是在目标尺度变化、遮挡和复杂背景的情况下。因此,采用深度学习技术,尤其是卷积神经网络(CNN)和区域卷积神经网络(R-CNN),在遥感图像目标检测中取得了显著的成果。本文将详细介绍基于深度学习的遥感目标检测系统,使用R
- Kaggle房价预测
一名小菜鸟的学习之路
深度学习pytorch深度学习机器学习python人工智能神经网络
Kaggle房价预测作为深度学习基础篇章的总结,我们将对本章内容学以致用。下面,让我们动手实战一个Kaggle比赛:房价预测。本节将提供未经调优的数据的预处理、模型的设计和超参数的选择。我们希望读者通过动手操作、仔细观察实验现象、认真分析实验结果并不断调整方法,得到令自己满意的结果。%matplotlibinlineimporttorchimporttorch.nnasnnimportnumpya
- C++ 与机器学习:构建高效推理引擎的秘诀
salsm
C++编程魔法师c++机器学习开发语言
随着深度学习模型逐渐从研究走向生产环境,推理能力成为部署中的关键环节。模型的推理引擎需要以极低的延迟快速处理输入数据,同时最大化地利用硬件资源。虽然Python被广泛用于模型的训练和开发,但C++却在推理领域独占鳌头,其性能优势和硬件控制能力无可替代。在这篇文章中,我们将从为什么选择C++、构建高效推理引擎的细节,以及相似的开源项目三个方面深入探讨如何利用C++打造高效的机器学习推理引擎。目录为什
- 《动手学深度学习》(PyTorch版)
chaser&upper
深度学习pytorch深度学习python
《动手学深度学习》PyTorch版前言简介面向人群食用方法方法一方法二方法三目录原书地址引用阅读指南前言读书啦!!!本项目将《动手学深度学习》原书中MXNet代码实现改为PyTorch实现。原书作者:阿斯顿·张、李沐、扎卡里C.立顿、亚历山大J.斯莫拉以及其他社区贡献者,GitHub地址:https://github.com/d2l-ai/d2l-zh此书的中英版本存在一些不同,针对此书英文版的P
- 从简单到深刻的认知发展
AI架构设计之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
认知发展,人工智能,深度学习,神经网络,机器学习,自然语言处理,计算机视觉1.背景介绍认知发展是人类从简单到复杂的思维方式演进的过程,它涉及感知、记忆、语言、推理和决策等多个方面。随着人工智能技术的飞速发展,我们开始尝试用计算机模拟人类的认知能力,构建能够学习、理解和解决复杂问题的智能系统。从早期的符号逻辑到如今的深度学习,人工智能的发展经历了多个阶段。早期的人工智能研究主要集中在规则和逻辑推理上
- 使用onnxruntime-web 运行yolov8-nano推理
CHEN_RUI_2200
机器学习YOLO
ONNX(OpenNeuralNetworkExchange)模型具有以下两个特点促成了我们可以使用onnxruntime-web直接在web端上运行推理模型,为了让这个推理更直观,我选择了试验下yolov8识别预览图片:1.跨平台兼容性ONNX是一种开放的格式,可以在不同的深度学习框架之间共享模型,如PyTorch、TensorFlow、MXNet和Caffe2。这使得用户可以在一个框架中训练模
- 人工智能学习框架:深入解析与实战指南
一ge科研小菜鸡
人工智能人工智能
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注引言随着人工智能(AI)技术的飞速发展,深度学习、强化学习和自然语言处理等领域的应用愈加广泛。掌握人工智能学习框架(如TensorFlow、PyTorch、Keras等)已成为开发智能系统、研究前沿技术的必备技能。本指南将全面介绍人工智能主流学习框架的特点、安装方法、核心功能,以及通过实践案例展示如何使用这些框架进行AI模型开发、训练与优化。1.
- AI人工智能深度学习算法:搭建可拓展的深度学习模型架构
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
AI人工智能深度学习算法:搭建可拓展的深度学习模型架构作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着人工智能技术的飞速发展,深度学习作为其主要驱动力之一,已经在各个领域取得了显著的成果。然而,随着模型规模的不断扩大,如何高效地搭建、训练和部署深度学习模型,成为一个亟待解决的问题。传统的单机训练方式在计算资源有限的情况
- # 第一章:认识chatgpt
出门喝奶茶
chatgptchatgpt
chatgpt发展背景详细介绍一、基础理论背景人工智能和自然语言处理的兴起早期理论:20世纪中期,人工智能(AI)初见端倪,目标是模拟人类智能。自然语言处理作为AI的重要分支,致力于让机器理解和生成人类语言。关键里程碑:1980年代的统计方法和2000年代的神经网络技术,使NLP实现了从规则驱动到数据驱动的转变。神经网络与深度学习2010年代,深度学习的兴起极大推动了NLP的发展。基于大规模语料库
- 机器学习&深度学习目录
UQI-LIUWJ
各专栏目录深度学习人工智能1024程序员节
机器学习模型机器学习笔记:Transformer_刘文巾的博客-CSDN博客attention相关机器学习笔记:attention_UQI-LIUWJ的博客-CSDN博客机器学习笔记:ELMOBERT_UQI-LIUWJ的博客-CSDN博客机器学习笔记:ViT(论文AnImageIsWorth16X16Words:TransformersforImageRecognitionatScale)_UQ
- 遥感深度学习过程中图像分割的尺寸对模型训练结果的影响
司南锤
深度学习遥感深度学习人工智能
1.计算资源与显存占用大尺寸图像:需要更高的显存和计算资源,可能限制训练时的批大小(batchsize),甚至导致无法训练。解决方案:通常将大图裁剪为小尺寸的补丁(patches),例如256x256或512x512。小尺寸图像:显存占用低,但可能丢失全局上下文信息(如大面积地物分布),影响模型对复杂场景的理解。2.模型感受野与上下文信息小尺寸输入:模型感受野受限,可能无法捕捉大范围地物(如河流、
- #深度学习:从基础到实践
single_ffish
深度学习gpt神经网络生成对抗网络1024程序员节
深度学习是人工智能领域近年来最为火热的技术之一。它通过构建由多个隐藏层组成的神经网络模型,能够从海量数据中自动学习特征和表征,在图像识别、自然语言处理、语音识别等领域取得了突破性进展。本文将全面介绍深度学习的基础知识、主要算法和实践应用,帮助您快速掌握这一前沿技术。1.深度学习的基础1.1人工神经网络深度学习是基于人工神经网络(ArtificialNeuralNetwork,ANN)的一种机器学习
- 【深度学习|地学应用】遥感与深度学习:揭示梦柯冰川奥秘的前沿应用与实践解析
985小水博一枚呀
深度学习地学应用深度学习人工智能
【深度学习|地学应用】遥感与深度学习:揭示梦柯冰川奥秘的前沿应用与实践解析【深度学习|地学应用】遥感与深度学习:揭示梦柯冰川奥秘的前沿应用与实践解析文章目录【深度学习|地学应用】遥感与深度学习:揭示梦柯冰川奥秘的前沿应用与实践解析前言一、使用高分6号遥感影像结合深度学习对梦柯冰川的研究方向1.冰川边界自动化提取2.冰川变化动态监测3.冰川分类与分布特征分析二、梦柯冰川(MunkuGlacier)的
- 基于R-CNN深度学习的无人机目标检测系统:数据集、模型和UI界面的完整实现
2025年数学建模美赛
R-CNN检测系统深度学习cnn无人机计算机视觉目标检测人工智能
摘要随着无人机技术的迅猛发展,无人机在军事、农业、环境监测等多个领域的应用日益广泛。无人机目标检测系统的建设成为提升无人机自主飞行和环境感知能力的重要环节。本文将详细介绍如何构建一个基于深度学习的无人机目标检测系统,采用R-CNN(区域卷积神经网络)算法,通过用户界面设计和数据集处理,实现高效的目标检测功能。通过本项目,旨在为无人机目标检测提供一种可行的解决方案,并提高其在复杂环境下的工作效率。目
- 【Python】已解决:error: subprocess-exited-with-error
屿小夏
python开发语言linux
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- AI在电商平台商品描述生成中的应用
AI天才研究院
计算AI大模型企业级应用开发实战大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
AI在电商平台商品描述生成中的应用关键词:人工智能、电商平台、商品描述、自然语言处理、机器学习、深度学习摘要:本文深入探讨了人工智能在电商平台商品描述生成中的应用。首先,我们回顾了人工智能的概述和电商平台的发展背景。随后,分析了商品描述在电商平台中的重要性以及存在的问题。接下来,我们重点介绍了AI在商品描述生成中的应用技术,包括自然语言处理、机器学习和深度学习等。文章还通过实战案例展示了AI商品描
- 【Python】已解决:(cmd进入Python环境报错)No Python at ‘C:\Users…\Python\Python39\python.exe’
屿小夏
pythonlinux开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 深度学习之基于Django+YOLOv5商标识别
Q1744828575
pythonplotlypython
欢迎大家点赞、收藏、关注、评论啦,由于篇幅有限,只展示了部分核心代码。文章目录一项目简介二、功能三、系统四.总结一项目简介 一、项目背景在数字化时代,商标作为企业的重要资产,其保护和管理显得尤为重要。然而,传统的商标识别方法往往依赖于人工审查,效率低下且容易出错。随着深度学习技术的不断发展,尤其是目标检测领域的进步,自动化、高精度的商标识别成为可能。本项目旨在利用DjangoWeb框架和YOLO
- 动手学深度学习-卷积神经网络-3填充和步幅
像污秽一样
动手学深度学习深度学习cnn人工智能神经网络
目录填充步幅小结在上一节的例子(下图)中,输入的高度和宽度都为3,卷积核的高度和宽度都为2,生成的输出表征的维数为2×2。正如我们在上一节中所概括的那样,假设输入形状为nh×nw,卷积核形状为kh×kw,那么输出形状将是(nh−kh+1)×(nw−kw+1)。因此,卷积的输出形状取决于输入形状和卷积核的形状。还有什么因素会影响输出的大小呢?本节我们将介绍填充(padding)和步幅(stride)
- RTX 4090D和A10和T4显卡差别、价格对比
张3蜂
软件安装部署开源神经网络人工智能深度学习机器学习
RTX4090D、NVIDIAA10和NVIDIAT4三款显卡在设计用途、性能、功耗、价格等方面都有显著差异,以下是它们的主要区别:1.设计用途:RTX4090D:面向高端消费者市场,主要用于游戏、内容创作和3D渲染,适合需要高图形性能的用户,如游戏玩家和内容创作者。NVIDIAA10:专为数据中心和企业应用设计,优化了AI推理、深度学习、虚拟桌面基础设施(VDI)以及多实例GPU(多用户共享显卡
- 【TVM教程】为 Mobile GPU 自动调优卷积网络
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng,EddieYan针对特定设备的自动调优对于获得最佳性能至关重要。本文介绍如何调优整个卷积网络。TVM中MobileGPU的算子实现是以template形式编写的。该template有许多可调参数(tile因子
- 非凸科技招聘来啦!技术岗及非技术岗由你选!欢迎大家加入!
招聘
公司介绍:非凸科技成立于2018年,是国内领先的智能算法和交易系统服务公司,专注于智能算法交易领域的研究和开发。公司特点:投研团队来自华尔街顶级资管公司BlackRock等,以及多位来自腾讯、字节跳动的顶尖工程师;在职员工100+,投研和技术团队占总人数比例75%,多位成员是ACM/ICPCWorldFinal选手;公司司正基于Rust生态,结合机器学习、深度学习等新兴技术,打造高效率、低延迟、高
- 深度学习-70-大语言模型LLM之基于大模型LLM与检索增强技术RAG的智能知识库
皮皮冰燃
深度学习人工智能深度学习语言模型
文章目录1RAG出现的背景2搭建过程2.1数据收集2.2数据处理2.2.1数据清洗与预处理2.2.2文本分块2.2.3微调数据格式统一2.3建立向量索引2.4大模型选择与微调3开源知识库项目3.1FastGPT3.2AnythingLLM3.3LangChain-Chatchat4商业化解决方案4.1百度智能云+千帆大模型知识库4.2阿里云PAI+向量检索5参考附录1RAG出现的背景自从2022年
- transformer.js(一):这个前端大模型运行框架的可运行环境、使用方式、代码示例以及适合与不适合的场景
余生H
前端的AI工具书前端transformerjavascripthugginfacewebmlweb大模型
随着大模型的广泛应用,越来越多的开发者希望在前端直接运行机器学习模型,从而减少对后端的依赖,并提升用户体验。Transformer.js是一个专为前端环境设计的框架,它支持运行基于Transformer架构的深度学习模型,尤其是像BERT、GPT等广泛应用于自然语言处理(NLP)的模型。本文将全面解析Transformer.js的运行环境、使用方式、代码示例,以及其能够完成的功能与目前的限制,帮助
- Python magenta库:一款人工智能生成音乐与艺术的创新工具
程序员喵哥
python人工智能开发语言
更多Python学习内容:ipengtao.com随着人工智能在创意领域的不断进步,音乐和艺术生成正成为一种新的可能性。Magenta是由Google推出的一个开源项目,它结合了深度学习与艺术创作,为开发者提供了一系列强大的工具,帮助他们创作音乐、绘画等艺术作品。基于TensorFlow,Magenta不仅适用于研究人员,也适合开发者和艺术家,提供了易于上手的API和丰富的模型。安装在使用Mage
- Python&aconda系列:CUDA+Anaconda的安装以及 Conda实用命令
坦笑&&life
#pythonpythonconda开发语言
这里写目录标题一.深度学习环境配置:CUDA+Anaconda的安装3.1.1CUDA简介3.1.2查看电脑显卡型号是否支持CUDA的安装3.1.3查看电脑显卡的驱动版本3.1.4根据显卡驱动版本下载支持的CUDA版本3.1.5检查CUDA是否安装成功3.1.6安装Anaconda3.1.7检查Anaconda是否安装成功3.1.8配置Anaconda的安装包下载源二.Conda实用命令conda
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源