单隐层神经网络 python_实现一个单隐层神经网络

仅仅记录神经网络编程主线。

一 引用工具包

import numpy asnp

import matplotlib.pyplotaspltfrom testCases import *import sklearn

import sklearn.datasets

import sklearn.linear_modelfromplanar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets%matplotlib inline

np.random.seed(1) # set a seed so that the results are consistent

二 读入数据集

输入函数实现在最下面附录

X, Y = load_planar_dataset()

lanar是二分类数据集,可视化如下图,外形像花的一样的非线性数据集。

plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral);

- 特征 (x1, x2)

- 类别 (red:0, blue:1).

三 神经网络结构

对于输入样本x,前向传播计算如下公式:

损失函数J:

输入样本X:[n_x,m]; 假设输入m个样本,每个样本k维,输入神经元n_x个数=特征维度k,输出神经个数n_y=类别个数。

W1:[n_h,n_x];

b1:[n_h,1];

W2:[n_y,n_h];

b2:[n_y,1];

trick:Wi第一维是第i+1层的神经元个数,第二维是第i层的神经元个数;bi第一维是第i层的神经元个数,第二维永远是1,因为python有broadcast机制,自动对齐。

def layer_sizes(X, Y):

"""

Arguments:

X -- input dataset of shape (input size, number of examples)

Y -- labels of shape (output size, number of examples)

Returns:

n_x -- the size of the input layer

n_h -- the size of the hidden layer

n_y -- the size of the output layer

"""

### START CODE HERE ### (≈ 3 lines of code)

n_x = X.shape[0] # size of input layer

n_h = 4

n_y = Y.shape[0] # size of output layer

### END CODE HERE ###

return (n_x, n_h, n_y)

四 初始化参数

W1,W2:不能初始化为0矩阵,如果这样第一个隐藏所有神经元梯度都和第一个一样: np.random.randn(a,b) * 0.01 .

b1,b2.:初始化为0向量 np.zeros((a,b)).

def initialize_parameters(n_x, n_h, n_y):

"""

Argument:

n_x -- size of the input layer

n_h -- size of the hidden layer

n_y -- size of the output layer

Returns:

params -- python dictionary containing your parameters:

W1 -- weight matrix of shape (n_h, n_x)

b1 -- bias vector of shape (n_h, 1)

W2 -- weight matrix of shape (n_y, n_h)

b2 -- bias vector of shape (n_y, 1)

"""

np.random.seed(2) # we set up a seed so that your output matches ours although the initialization is random.

### START CODE HERE ### (≈ 4 lines of code)

W1 = np.random.randn(n_h, n_x)*0.01

b1 = np.zeros((n_h, 1))

W2 = np.random.randn(n_y, n_h)*0.01

b2 = np.zeros((n_y, 1))

### END CODE HERE ###

assert (W1.shape == (n_h, n_x))

assert (b1.shape == (n_h, 1))

assert (W2.shape == (n_y, n_h))

assert (b2.shape == (n_y, 1))

parameters = {"W1": W1,

"b1": b1,

"W2": W2,

"b2": b2}

return parameters

五 前向传播

cache缓存计算结果,反向传播需要。

def forward_propagation(X, parameters):

"""

Argument:

X -- input data of size (n_x, m)

parameters -- python dictionary containing your parameters (output of initialization function)

Returns:

A2 -- The sigmoid output of the second activation

cache -- a dictionary containing "Z1", "A1", "Z2" and "A2"

"""

# Retrieve each parameter from the dictionary "parameters"

### START CODE HERE ### (≈ 4 lines of code)

W1 = parameters['W1']

b1 = parameters['b1']

W2 = parameters['W2']

b2 = parameters['b2']

### END CODE HERE ###

# Implement Forward Propagation to calculate A2 (probabilities)

### START CODE HERE ### (≈ 4 lines of code)

Z1 = np.dot(W1, X) + b1

A1 = np.tanh(Z1)

Z2 = np.dot(W2, A1) + b2

A2 = sigmoid(Z2)

### END CODE HERE ###

assert(A2.shape == (1, X.shape[1]))

cache = {"Z1": Z1,

"A1": A1,

"Z2": Z2,

"A2": A2}

return A2, cache

六 计算损失函数

def compute_cost(A2, Y, parameters):

"""

Computes the cross-entropy cost given in equation (13)

Arguments:

A2 -- The sigmoid output of the second activation, of shape (1, number of examples)

Y -- "true" labels vector of shape (1, number of examples)

parameters -- python dictionary containing your parameters W1, b1, W2 and b2

Returns:

cost -- cross-entropy cost given equation (13)

"""

m = float(Y.shape[1]) # number of example

# Compute the cross-entropy cost

### START CODE HERE ### (≈ 2 lines of code)

logprobs = np.multiply(np.log(A2),Y) + np.multiply((1-Y), (np.log(1-A2)))

cost = -1/m * np.sum(logprobs)

### END CODE HERE ###

cost = np.squeeze(cost) # makes sure cost is the dimension we expect.

# E.g., turns [[17]] into 17

assert(isinstance(cost, float))

return cost

七 反向传播

每个参数的维度

dW1:[n_h,n_x];

db1:[n_h,1];

dW2:[n_y,n_h];

db2:[n_y,1];

trick:dW1,db1,dW2,db2和W1,b1,W2,b2的维度一模一样。

def backward_propagation(parameters, cache, X, Y):

"""

Implement the backward propagation using the instructions above.

Arguments:

parameters -- python dictionary containing our parameters

cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".

X -- input data of shape (2, number of examples)

Y -- "true" labels vector of shape (1, number of examples)

Returns:

grads -- python dictionary containing your gradients with respect to different parameters

"""

m = float(X.shape[1])

# First, retrieve W1 and W2 from the dictionary "parameters".

### START CODE HERE ### (≈ 2 lines of code)

W1 = parameters['W1']

W2 = parameters['W2']

### END CODE HERE ###

# Retrieve also A1 and A2 from dictionary "cache".

### START CODE HERE ### (≈ 2 lines of code)

A1 = cache['A1']

A2 = cache['A2']

### END CODE HERE ###

# Backward propagation: calculate dW1, db1, dW2, db2.

### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above)

dZ2= A2 - Y

dW2 =1/m * np.dot(dZ2, A1.T)

db2 =1/m * np.sum(dZ2, axis=1, keepdims=True)

dZ1 = np.dot(W2.T, dZ2) * (1 - np.power(A1, 2))

dW1 = 1/m * np.dot(dZ1, X.T)

db1 =1/m * np.sum(dZ1, axis=1, keepdims=True)

### END CODE HERE ###

grads = {"dW1": dW1,

"db1": db1,

"dW2": dW2,

"db2": db2}

return grads

八 梯度更新

优化过程,梯度更新: 使用 (dW1, db1, dW2, db2) 更新参数 (W1, b1, W2, b2).

梯度下降公式:

 其中 α 是学习率.

学习率: 如图所示,不同学习率,熟练情况不一样.

def update_parameters(parameters, grads, learning_rate = 1.2):

"""

Updates parameters using the gradient descent update rule given above

Arguments:

parameters -- python dictionary containing your parameters

grads -- python dictionary containing your gradients

Returns:

parameters -- python dictionary containing your updated parameters

"""

# Retrieve each parameter from the dictionary "parameters"

### START CODE HERE ### (≈ 4 lines of code)

W1 = parameters['W1']

b1 = parameters['b1']

W2 = parameters['W2']

b2 = parameters['b2']

### END CODE HERE ###

# Retrieve each gradient from the dictionary "grads"

### START CODE HERE ### (≈ 4 lines of code)

dW1 = grads["dW1"]

db1 = grads["db1"]

dW2 = grads["dW2"]

db2 = grads["db2"]

## END CODE HERE ###

# Update rule for each parameter

### START CODE HERE ### (≈ 4 lines of code)

W1 = W1 - learning_rate * dW1

b1 = b1 - learning_rate * db1

W2 = W2 - learning_rate * dW2

b2 = b2 - learning_rate * db2

### END CODE HERE ###

parameters = {"W1": W1,

"b1": b1,

"W2": W2,

"b2": b2}

return parameters

九 模型

将前面的函数整合成模型:

实现步骤:

1. 定义网络结构.

2. 初始化参数

3. Loop:

- 前向传播

- 计算损失函数

- 反向传播计算梯度

- 更新梯度

def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):

"""

Arguments:

X -- dataset of shape (2, number of examples)

Y -- labels of shape (1, number of examples)

n_h -- size of the hidden layer

num_iterations -- Number of iterations in gradient descent loop

print_cost -- if True, print the cost every 1000 iterations

Returns:

parameters -- parameters learnt by the model. They can then be used to predict.

"""

np.random.seed(3)

n_x = layer_sizes(X, Y)[0]

n_y = layer_sizes(X, Y)[2]

# Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2, parameters".

### START CODE HERE ### (≈ 5 lines of code)

n_x, n_h, n_y = layer_sizes(X, Y)

parameters = initialize_parameters(n_x, n_h, n_y)

W1 = parameters['W1']

b1 = parameters['b1']

W2 = parameters['W2']

b2 = parameters['b2']

### END CODE HERE ###

# Loop (gradient descent)

for i in range(0, num_iterations):

### START CODE HERE ### (≈ 4 lines of code)

# Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".

A2, cache = forward_propagation(X, parameters)

# Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".

cost = compute_cost(A2, Y, parameters)

# Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".

grads = backward_propagation(parameters, cache, X, Y)

# Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".

parameters = update_parameters(parameters, grads)

### END CODE HERE ###

# Print the cost every 1000 iterations

if print_cost and i % 1000 == 0:

print ("Cost after iteration %i: %f" %(i, cost))

return parameters

十 预测

对于一个样本,预估概率大于阈值0.5的为1,否则为0.

def predict(parameters, X):

"""

Using the learned parameters, predicts a class for each example in X

Arguments:

parameters -- python dictionary containing your parameters

X -- input data of size (n_x, m)

Returns

predictions -- vector of predictions of our model (red: 0 / blue: 1)

"""

# Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold.

### START CODE HERE ### (≈ 2 lines of code)

A2, cache = forward_propagation(X, parameters)

predictions = np.array( [1 if x >0.5 else 0 for x in A2.reshape(-1,1)] ).reshape(A2.shape) # 这一行代码的作用详见下面代码示例

### END CODE HERE ###

return predictions

planar数据集测试单隐层神经网络性能,隐层神经元个数设置为4.

# Build a model with a n_h-dimensional hidden layer

parameters= nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)

# Plot the decision boundary

plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)

plt.title("Decision Boundary for hidden layer size" + str(4))

输出结果

附录:load输入数据集

import matplotlib.pyplot asplt

import numpyasnp

import sklearn

import sklearn.datasets

import sklearn.linear_model

def plot_decision_boundary(model, X, y):

# Set min and max values and give it some padding

x_min, x_max= X[0, :].min() - 1, X[0, :].max() + 1y_min, y_max= X[1, :].min() - 1, X[1, :].max() + 1h= 0.01# Generate a grid of points with distance h between them

xx, yy=np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

# Predict the function valueforthe whole grid

Z=model(np.c_[xx.ravel(), yy.ravel()])

Z=Z.reshape(xx.shape)

# Plot the contour and training examples

plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)

plt.ylabel('x2')

plt.xlabel('x1')

plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)

def sigmoid(x):"""Compute the sigmoid of x

Arguments:

x--A scalar or numpy array of any size.

Return:

s--sigmoid(x)""" s = 1/(1+np.exp(-x))returns

def load_planar_dataset():

np.random.seed(1)

m= 400# number of examples

N= int(m/2) # number of points per classD= 2# dimensionality

X= np.zeros((m,D)) # data matrix where each row isa single example

Y= np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 forblue)

a= 4# maximum ray of the flowerfor j in range(2):

ix= range(N*j,N*(j+1))

t= np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2# theta

r= a*np.sin(4*t) + np.random.randn(N)*0.2# radius

X[ix]= np.c_[r*np.sin(t), r*np.cos(t)]

Y[ix]=j

X=X.T

Y=Y.TreturnX, Y

def load_extra_datasets():

N= 200noisy_circles= sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3)

noisy_moons= sklearn.datasets.make_moons(n_samples=N, noise=.2)

blobs= sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6)

gaussian_quantiles= sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None)

no_structure= np.random.rand(N, 2), np.random.rand(N, 2)return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure

参考:

你可能感兴趣的:(单隐层神经网络,python)