文章代码修改于kaggle博主DIPAMVASANI,本文旨在将精华的内容留住并加以分析,防止繁杂的信息扰乱该文的本质,因此删除了图形化处理模块并在核心代码处加了中文注释。
数据的检测是很重要的,之前没有好好地检查数据,导致很多有用的信息没有看到,因此要先检查数据集的数据,保证核心的信息不遗漏,例如:y值(待预测值)和x值(属性值)一定要分清。
这个部分代码由于最后的分析实际上不需要,因此删除。
首先要注意非数值型变量进行one-hot编码。
然后直接去计算目标数据和各属性的相关性矩阵,并取topK个用作最后的建模。
先用训练集的均值预测一下试试,如果后面的模型比均值还烂。。。那拜拜了您内。
最后分数据集分一分,注意随机种子,分好之后用各个模型跑出误差,挑选最优,即完成。
如果感觉这部分没有看懂,没有关系,后面我们会详细讲解。
首先读入数据并用describe函数查看大致属性
# Some basic analysis
student = pd.read_csv('./input/student-mat.csv')
print(student.head())
print('Total number of students:',len(student))
print(student['G3'].describe())
然后对整个数据集进行one-hot编码
# Encoding categorical variables
# Select only categorical variables
category_df = student.select_dtypes(include=['object']) # 挑选非数值型变量
# One hot encode the variables
dummy_df = pd.get_dummies(category_df) # get_dummies是实现one-hot编码的方法
# Put the grade back in the dataframe
dummy_df['G3'] = student['G3']
# Find correlations with grade
dummy_df.corr()['G3'].sort_values()
# Applying one hot encoding to our data and finding correlation again
# selecting the most correlated values and dropping the others
labels = student['G3'] # G3那一列的数值
# drop the school and grade columns
student = student.drop(['school', 'G1', 'G2'], axis='columns') # 删除三列
# One-Hot Encoding of Categorical Variables
student = pd.get_dummies(student) # 对整个数据集进行one-hot编码
随后进行相关性分析
# Find correlations with the Grade 生成与G3相关度的排序列(降序排列)
most_correlated = student.corr().abs()['G3'].sort_values(ascending=False) # student.corr()生成相关矩阵 .abs()取绝对值 ['G3']挑出G3列 sort默认升序
# Maintain the top 8 most correlation features with Grade
most_correlated = most_correlated[:9] # 其实就是[0:9]有0无9 最相关的9个变量(G3是自己 除G3外8个)
print(most_correlated)
student = student.loc[:, most_correlated.index] # .loc 通过label选定一组行或列 第一个是行 逗号后面是列 选定最相关的九个变量 旗下每个学生的属性值
print(student.head())
然后运用最简单的均值预测作为我们的基线方法
# splitting the data into training and testing data (75% and 25%)
# we mention the random state to achieve the same split everytime we run the code
#train_test_split(训练数据,样本结果,测试集的样本占比,random_state=None(default)每次划分不同,为整数则相同)
X_train, X_test, y_train, y_test = train_test_split(student, labels, test_size = 0.25, random_state=42)
print(X_train.head())
# Calculate mae and rmse
def evaluate_predictions(predictions, true):
mae = np.mean(abs(predictions - true)) # 平均绝对误差(np.mean需要是数组)
rmse = np.sqrt(np.mean((predictions - true) ** 2)) # 均方根误差(np.sqrt同样需要是数组)
return mae, rmse
# find the median
median_pred = X_train['G3'].median() # 取中位数
# create a list with all values as median
median_preds = [median_pred for _ in range(len(X_test))] # 生成长度为测试集的全值为median_pred的列表
# store the true G3 values for passing into the function
true = X_test['G3'] # 保存真实的结果
# Display the naive baseline metrics
mb_mae, mb_rmse = evaluate_predictions(median_preds, true)
print('Median Baseline MAE: {:.4f}'.format(mb_mae))
print('Median Baseline RMSE: {:.4f}'.format(mb_rmse))
最后跑模型,生成结果(最后的部分是唯一生成图片的部分,用于生成模型的比较,需要掌握)
results = evaluate(X_train, X_test, y_train, y_test)
print(results)
plt.figure(figsize=(12, 8))
# Root mean squared error
ax = plt.subplot(1, 2, 1)
results.sort_values('mae', ascending = True).plot.bar(y = 'mae', color = 'b', ax = ax, fontsize=20)
plt.title('Model Mean Absolute Error', fontsize=20)
plt.ylabel('MAE', fontsize=20)
# Median absolute percentage error
ax = plt.subplot(1, 2, 2)
results.sort_values('rmse', ascending = True).plot.bar(y = 'rmse', color = 'r', ax = ax, fontsize=20)
plt.title('Model Root Mean Squared Error', fontsize=20)
plt.ylabel('RMSE',fontsize=20)
plt.show()
import pandas as pd
from matplotlib import pyplot as plt
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import ElasticNet
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.svm import SVR
# Splitting data into training/testing
from sklearn.model_selection import train_test_split
# Some basic analysis
student = pd.read_csv('./input/student-mat.csv')
print(student.head())
print('Total number of students:',len(student))
print(student['G3'].describe())
# Correlation
print(student.corr()['G3'].sort_values())
# Encoding categorical variables
# Select only categorical variables
category_df = student.select_dtypes(include=['object']) # 挑选非数值型变量
# One hot encode the variables
dummy_df = pd.get_dummies(category_df) # get_dummies是实现one-hot编码的方法
# Put the grade back in the dataframe
dummy_df['G3'] = student['G3']
# Find correlations with grade
dummy_df.corr()['G3'].sort_values()
# Applying one hot encoding to our data and finding correlation again
# selecting the most correlated values and dropping the others
labels = student['G3'] # G3那一列的数值
# drop the school and grade columns
student = student.drop(['school', 'G1', 'G2'], axis='columns') # 删除三列
# One-Hot Encoding of Categorical Variables
student = pd.get_dummies(student) # 对整个数据集进行one-hot编码
# Find correlations with the Grade 生成与G3相关度的排序列(降序排列)
most_correlated = student.corr().abs()['G3'].sort_values(ascending=False) # student.corr()生成相关矩阵 .abs()取绝对值 ['G3']挑出G3列 sort默认升序
# Maintain the top 8 most correlation features with Grade
most_correlated = most_correlated[:9] # 其实就是[0:9]有0无9 最相关的9个变量(G3是自己 除G3外8个)
print(most_correlated)
student = student.loc[:, most_correlated.index] # .loc 通过label选定一组行或列 第一个是行 逗号后面是列 选定最相关的九个变量 旗下每个学生的属性值
print(student.head())
# splitting the data into training and testing data (75% and 25%)
# we mention the random state to achieve the same split everytime we run the code
#train_test_split(训练数据,样本结果,测试集的样本占比,random_state=None(default)每次划分不同,为整数则相同)
X_train, X_test, y_train, y_test = train_test_split(student, labels, test_size = 0.25, random_state=42)
print(X_train.head())
# Calculate mae and rmse
def evaluate_predictions(predictions, true):
mae = np.mean(abs(predictions - true)) # 平均绝对误差(np.mean需要是数组)
rmse = np.sqrt(np.mean((predictions - true) ** 2)) # 均方根误差(np.sqrt同样需要是数组)
return mae, rmse
# find the median
median_pred = X_train['G3'].median() # 取中位数
# create a list with all values as median
median_preds = [median_pred for _ in range(len(X_test))] # 生成长度为测试集的全值为median_pred的列表
# store the true G3 values for passing into the function
true = X_test['G3'] # 保存真实的结果
# Display the naive baseline metrics
mb_mae, mb_rmse = evaluate_predictions(median_preds, true)
print('Median Baseline MAE: {:.4f}'.format(mb_mae))
print('Median Baseline RMSE: {:.4f}'.format(mb_rmse))
# Evaluate several ml models by training on training set and testing on testing set
def evaluate(X_train, X_test, y_train, y_test):
# Names of models
model_name_list = ['Linear Regression', 'ElasticNet Regression',
'Random Forest', 'Extra Trees', 'SVM',
'Gradient Boosted', 'Baseline']
X_train = X_train.drop('G3', axis='columns')
X_test = X_test.drop('G3', axis='columns')
# Instantiate the models
model1 = LinearRegression()
model2 = ElasticNet() # 结合岭回归和Lasso回归,避免过拟合
model3 = RandomForestRegressor() # 多个决策树
model4 = ExtraTreesRegressor() # 类随机森林
model5 = SVR() # SVM的反义词
model6 = GradientBoostingRegressor(n_estimators=50) # 梯度提升回归
# Dataframe for results
results = pd.DataFrame(columns=['mae', 'rmse'], index=model_name_list) # columns列 index行
# Train and predict with each model
for i, model in enumerate([model1, model2, model3, model4, model5, model6]):
model.fit(X_train, y_train)
predictions = model.predict(X_test)
# Metrics
mae = np.mean(abs(predictions - y_test))
rmse = np.sqrt(np.mean((predictions - y_test) ** 2))
# Insert results into the dataframe
model_name = model_name_list[i]
results.loc[model_name, :] = [mae, rmse]
# Median Value Baseline Metrics
baseline = np.median(y_train)
baseline_mae = np.mean(abs(baseline - y_test))
baseline_rmse = np.sqrt(np.mean((baseline - y_test) ** 2))
results.loc['Baseline', :] = [baseline_mae, baseline_rmse]
return results
results = evaluate(X_train, X_test, y_train, y_test)
print(results)
plt.figure(figsize=(12, 8))
# Root mean squared error
ax = plt.subplot(1, 2, 1)
results.sort_values('mae', ascending = True).plot.bar(y = 'mae', color = 'b', ax = ax, fontsize=20)
plt.title('Model Mean Absolute Error', fontsize=20)
plt.ylabel('MAE', fontsize=20)
# Median absolute percentage error
ax = plt.subplot(1, 2, 2)
results.sort_values('rmse', ascending = True).plot.bar(y = 'rmse', color = 'r', ax = ax, fontsize=20)
plt.title('Model Root Mean Squared Error', fontsize=20)
plt.ylabel('RMSE',fontsize=20)
plt.show()