用机器学习进行学生成绩预测的数据分析(入门向 附可用源码)

用机器学习进行学生成绩预测的数据分析(入门向 附可用源码)

  • 声明
  • 思路
    • 检查数据
    • 图像化处理
    • 分析
      • 相关性分析
      • 构建模型
  • 代码实现
  • 可运行代码

声明

文章代码修改于kaggle博主DIPAMVASANI,本文旨在将精华的内容留住并加以分析,防止繁杂的信息扰乱该文的本质,因此删除了图形化处理模块并在核心代码处加了中文注释。

思路

检查数据

数据的检测是很重要的,之前没有好好地检查数据,导致很多有用的信息没有看到,因此要先检查数据集的数据,保证核心的信息不遗漏,例如:y值(待预测值)和x值(属性值)一定要分清。

图像化处理

这个部分代码由于最后的分析实际上不需要,因此删除。

分析

相关性分析

首先要注意非数值型变量进行one-hot编码。
然后直接去计算目标数据和各属性的相关性矩阵,并取topK个用作最后的建模。

构建模型

先用训练集的均值预测一下试试,如果后面的模型比均值还烂。。。那拜拜了您内。
最后分数据集分一分,注意随机种子,分好之后用各个模型跑出误差,挑选最优,即完成。

如果感觉这部分没有看懂,没有关系,后面我们会详细讲解。

代码实现

首先读入数据并用describe函数查看大致属性

# Some basic analysis
student = pd.read_csv('./input/student-mat.csv')
print(student.head())
print('Total number of students:',len(student))
print(student['G3'].describe())

然后对整个数据集进行one-hot编码

# Encoding categorical variables
# Select only categorical variables
category_df = student.select_dtypes(include=['object']) # 挑选非数值型变量

# One hot encode the variables
dummy_df = pd.get_dummies(category_df) # get_dummies是实现one-hot编码的方法

# Put the grade back in the dataframe
dummy_df['G3'] = student['G3']

# Find correlations with grade
dummy_df.corr()['G3'].sort_values()

# Applying one hot encoding to our data and finding correlation again
# selecting the most correlated values and dropping the others
labels = student['G3'] # G3那一列的数值

# drop the school and grade columns
student = student.drop(['school', 'G1', 'G2'], axis='columns') # 删除三列

# One-Hot Encoding of Categorical Variables
student = pd.get_dummies(student) # 对整个数据集进行one-hot编码

随后进行相关性分析

# Find correlations with the Grade 生成与G3相关度的排序列(降序排列)
most_correlated = student.corr().abs()['G3'].sort_values(ascending=False) # student.corr()生成相关矩阵 .abs()取绝对值 ['G3']挑出G3列 sort默认升序

# Maintain the top 8 most correlation features with Grade
most_correlated = most_correlated[:9] # 其实就是[0:9]有0无9 最相关的9个变量(G3是自己 除G3外8个)
print(most_correlated)

student = student.loc[:, most_correlated.index] # .loc 通过label选定一组行或列 第一个是行 逗号后面是列 选定最相关的九个变量 旗下每个学生的属性值
print(student.head())

然后运用最简单的均值预测作为我们的基线方法

# splitting the data into training and testing data (75% and 25%)
# we mention the random state to achieve the same split everytime we run the code
#train_test_split(训练数据,样本结果,测试集的样本占比,random_state=None(default)每次划分不同,为整数则相同)
X_train, X_test, y_train, y_test = train_test_split(student, labels, test_size = 0.25, random_state=42)

print(X_train.head())


# Calculate mae and rmse
def evaluate_predictions(predictions, true):
    mae = np.mean(abs(predictions - true)) # 平均绝对误差(np.mean需要是数组)
    rmse = np.sqrt(np.mean((predictions - true) ** 2)) # 均方根误差(np.sqrt同样需要是数组)

    return mae, rmse

# find the median
median_pred = X_train['G3'].median() # 取中位数

# create a list with all values as median
median_preds = [median_pred for _ in range(len(X_test))] # 生成长度为测试集的全值为median_pred的列表

# store the true G3 values for passing into the function
true = X_test['G3'] # 保存真实的结果

# Display the naive baseline metrics
mb_mae, mb_rmse = evaluate_predictions(median_preds, true)
print('Median Baseline  MAE: {:.4f}'.format(mb_mae))
print('Median Baseline RMSE: {:.4f}'.format(mb_rmse))

最后跑模型,生成结果(最后的部分是唯一生成图片的部分,用于生成模型的比较,需要掌握)

results = evaluate(X_train, X_test, y_train, y_test)
print(results)

plt.figure(figsize=(12, 8))

# Root mean squared error
ax =  plt.subplot(1, 2, 1)
results.sort_values('mae', ascending = True).plot.bar(y = 'mae', color = 'b', ax = ax, fontsize=20)
plt.title('Model Mean Absolute Error', fontsize=20)
plt.ylabel('MAE', fontsize=20)

# Median absolute percentage error
ax = plt.subplot(1, 2, 2)
results.sort_values('rmse', ascending = True).plot.bar(y = 'rmse', color = 'r', ax = ax, fontsize=20)
plt.title('Model Root Mean Squared Error', fontsize=20)
plt.ylabel('RMSE',fontsize=20)

plt.show()

可运行代码

import pandas as pd
from matplotlib import pyplot as plt
import numpy as np

from sklearn.linear_model import LinearRegression
from sklearn.linear_model import ElasticNet
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.svm import SVR

# Splitting data into training/testing
from sklearn.model_selection import train_test_split

# Some basic analysis
student = pd.read_csv('./input/student-mat.csv')
print(student.head())
print('Total number of students:',len(student))
print(student['G3'].describe())

# Correlation
print(student.corr()['G3'].sort_values())

# Encoding categorical variables
# Select only categorical variables
category_df = student.select_dtypes(include=['object']) # 挑选非数值型变量

# One hot encode the variables
dummy_df = pd.get_dummies(category_df) # get_dummies是实现one-hot编码的方法

# Put the grade back in the dataframe
dummy_df['G3'] = student['G3']

# Find correlations with grade
dummy_df.corr()['G3'].sort_values()

# Applying one hot encoding to our data and finding correlation again
# selecting the most correlated values and dropping the others
labels = student['G3'] # G3那一列的数值

# drop the school and grade columns
student = student.drop(['school', 'G1', 'G2'], axis='columns') # 删除三列

# One-Hot Encoding of Categorical Variables
student = pd.get_dummies(student) # 对整个数据集进行one-hot编码

# Find correlations with the Grade 生成与G3相关度的排序列(降序排列)
most_correlated = student.corr().abs()['G3'].sort_values(ascending=False) # student.corr()生成相关矩阵 .abs()取绝对值 ['G3']挑出G3列 sort默认升序

# Maintain the top 8 most correlation features with Grade
most_correlated = most_correlated[:9] # 其实就是[0:9]有0无9 最相关的9个变量(G3是自己 除G3外8个)
print(most_correlated)

student = student.loc[:, most_correlated.index] # .loc 通过label选定一组行或列 第一个是行 逗号后面是列 选定最相关的九个变量 旗下每个学生的属性值
print(student.head())

# splitting the data into training and testing data (75% and 25%)
# we mention the random state to achieve the same split everytime we run the code
#train_test_split(训练数据,样本结果,测试集的样本占比,random_state=None(default)每次划分不同,为整数则相同)
X_train, X_test, y_train, y_test = train_test_split(student, labels, test_size = 0.25, random_state=42)

print(X_train.head())


# Calculate mae and rmse
def evaluate_predictions(predictions, true):
    mae = np.mean(abs(predictions - true)) # 平均绝对误差(np.mean需要是数组)
    rmse = np.sqrt(np.mean((predictions - true) ** 2)) # 均方根误差(np.sqrt同样需要是数组)

    return mae, rmse

# find the median
median_pred = X_train['G3'].median() # 取中位数

# create a list with all values as median
median_preds = [median_pred for _ in range(len(X_test))] # 生成长度为测试集的全值为median_pred的列表

# store the true G3 values for passing into the function
true = X_test['G3'] # 保存真实的结果

# Display the naive baseline metrics
mb_mae, mb_rmse = evaluate_predictions(median_preds, true)
print('Median Baseline  MAE: {:.4f}'.format(mb_mae))
print('Median Baseline RMSE: {:.4f}'.format(mb_rmse))


# Evaluate several ml models by training on training set and testing on testing set
def evaluate(X_train, X_test, y_train, y_test):
    # Names of models
    model_name_list = ['Linear Regression', 'ElasticNet Regression',
                       'Random Forest', 'Extra Trees', 'SVM',
                       'Gradient Boosted', 'Baseline']
    X_train = X_train.drop('G3', axis='columns')
    X_test = X_test.drop('G3', axis='columns')

    # Instantiate the models
    model1 = LinearRegression()
    model2 = ElasticNet() # 结合岭回归和Lasso回归,避免过拟合
    model3 = RandomForestRegressor() # 多个决策树
    model4 = ExtraTreesRegressor() # 类随机森林
    model5 = SVR() # SVM的反义词
    model6 = GradientBoostingRegressor(n_estimators=50) # 梯度提升回归

    # Dataframe for results
    results = pd.DataFrame(columns=['mae', 'rmse'], index=model_name_list) # columns列 index行

    # Train and predict with each model
    for i, model in enumerate([model1, model2, model3, model4, model5, model6]):
        model.fit(X_train, y_train)
        predictions = model.predict(X_test)

        # Metrics
        mae = np.mean(abs(predictions - y_test))
        rmse = np.sqrt(np.mean((predictions - y_test) ** 2))

        # Insert results into the dataframe
        model_name = model_name_list[i]
        results.loc[model_name, :] = [mae, rmse]

    # Median Value Baseline Metrics
    baseline = np.median(y_train)
    baseline_mae = np.mean(abs(baseline - y_test))
    baseline_rmse = np.sqrt(np.mean((baseline - y_test) ** 2))

    results.loc['Baseline', :] = [baseline_mae, baseline_rmse]

    return results

results = evaluate(X_train, X_test, y_train, y_test)
print(results)

plt.figure(figsize=(12, 8))

# Root mean squared error
ax =  plt.subplot(1, 2, 1)
results.sort_values('mae', ascending = True).plot.bar(y = 'mae', color = 'b', ax = ax, fontsize=20)
plt.title('Model Mean Absolute Error', fontsize=20)
plt.ylabel('MAE', fontsize=20)

# Median absolute percentage error
ax = plt.subplot(1, 2, 2)
results.sort_values('rmse', ascending = True).plot.bar(y = 'rmse', color = 'r', ax = ax, fontsize=20)
plt.title('Model Root Mean Squared Error', fontsize=20)
plt.ylabel('RMSE',fontsize=20)

plt.show()

你可能感兴趣的:(数据分析,数据分析,机器学习,数据挖掘)