Inception v1 v2 v3

Inception v1

论文:Going deeper with convolutions

Inception的目的

论文主要介绍了,如何在有限的计算资源内,进一步提升网络的性能。
提升网络的性能的方法有很多,例如硬件的升级,更大的数据集等。但一般而言,提升网络性能最直接的方法是增加网络的深度和宽度。其中,网络的深度只的是网络的层数,宽度指的是每层的通道数。但是,这种方法会带来两个不足:
  a) 容易发生过拟合。当深度和宽度不断增加的时候,需要学习到的参数也不断增加,巨大的参数容易发生过拟合。
  b) 均匀地增加网络的大小,会导致计算量的加大。
因此,解决上述不足的方法是引入稀疏特性和将全连接层转换成稀疏连接。这个思路的缘由来自于两方面:1)生物的神经系统连接是稀疏的;2)有文献指出:如果数据集的概率分布能够被大型且非常稀疏的DNN网络所描述的话,那么通过分析前面层的激活值的相关统计特性和将输出高度相关的神经元进行聚类,便可逐层构建出最优的网络拓扑结构。说明臃肿的网络可以被不失性能地简化。
但是,现在的计算框架对非均匀的稀疏数据进行计算是非常低效的,主要是因为查找和缓存的开销。因此,作者提出了一个想法,既能保持滤波器级别的稀疏特性,又能充分密集矩阵的高计算性能。有大量文献指出,将稀疏矩阵聚类成相对密集的子矩阵,能提高计算性能。根据此想法,提出了Inception结构。

Inception结构

inception结构的主要思路是:如何使用一个密集成分来近似或者代替最优的局部稀疏结构。inception V1的结构如下面两个图所示。
Inception v1 v2 v3_第1张图片
Inception v1 v2 v3_第2张图片

代码

以图b为例

class Inception(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
        super(Inception, self).__init__()

        self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)

        self.branch2 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3red, kernel_size=1),
            BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)
        )

        self.branch3 = nn.Sequential(
            BasicConv2d(in_channels, ch5x5red, kernel_size=1),
            BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2)
        )

        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            BasicConv2d(in_channels, pool_proj, kernel_size=1)
        )

    def forward(self, x):
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)

        outputs = [branch1, branch2, branch3, branch4]
        return torch.cat(outputs, dim=1)

例子:GoogLeNet

GoogLeNet是由inception模块进行组成的,结构太大了,就不放出来了,这里做出几点说明:
  a)GoogLeNet采用了模块化的结构,方便增添和修改;
  b)网络最后采用了average pooling来代替全连接层,想法来自NIN,事实证明可以将TOP1 accuracy提高0.6%。但是,实际在最后还是加了一个全连接层,主要是为了方便以后大家finetune;
  c)虽然移除了全连接,但是网络中依然使用了Dropout;
  d)为了避免梯度消失,网络额外增加了2个辅助的softmax用于向前传导梯度。文章中说这两个辅助的分类器的loss应该加一个衰减系数,但看源码中的model也没有加任何衰减。此外,实际测试的时候,这两个额外的softmax会被去掉。
  结构图如下所示,  Inception v1 v2 v3_第3张图片
每一层的输入输出以及参数量和Flops的大小
Inception v1 v2 v3_第4张图片

代码构建

GooLeNet

import torch
import torch.nn as nn
import torchvision.models as models
from torchsummary import summary
import torch.optim as optim


class GoogLeNet(nn.Module):
    def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):
        super(GoogLeNet, self).__init__()
        self.aux_logits = aux_logits
        #输入shape(224,224,3)
        self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)#OUTPOUT:(112,112,64)
        self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)#output:(56,56,64)
        #depth=2
        self.conv2 = BasicConv2d(64, 64, kernel_size=1)#output:(56,56,64)
        self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)#output:(56,56,192)
        self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)#output:(28,28,192)

        self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)#output:(28,28,256)
        self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)#output:(28,28,480)
        self.maxpool3 = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)#output:(14,14,480)

        self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)#output:(14,14,512)
        self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)#output:(14,14,512)
        self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)#output:(14,14,512)
        self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)#output:(14,14,528)
        self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)#output:(14,14,832)
        self.maxpool4 = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)#output:(7,7,832)

        self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)#output:(7,7,832)
        self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)#output:(7,7,1024)

        if self.aux_logits:
            self.aux1 = InceptionAux(512, num_classes)
            self.aux2 = InceptionAux(528, num_classes)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(p=0.2)
        self.fc = nn.Linear(1024, num_classes)
        if init_weights:
            self._init_weight()

    def forward(self, x):
        # N x 3 x 224 x 224
        x = self.conv1(x)
        # N x 64 x 112 x 112
        x = self.maxpool1(x)
        # N x 64 x 56 x 56
        x = self.conv2(x)
        # N x 64 x 56 x 56
        x = self.conv3(x)
        # N x 192 x 56 x 56
        x = self.maxpool2(x)

        # N x 192 x 28 x 28
        x = self.inception3a(x)
        # N x 256 x 28 x 28
        x = self.inception3b(x)
        # N x 480 x 28 x 28
        x = self.maxpool3(x)
        # N x 480 x 14 x 14
        x = self.inception4a(x)
        # N x 512 x 14 x 14
        if self.aux_logits and self.training:
            aux1 = self.aux1(x)

        x = self.inception4b(x)
        # N x 512 x 14 x 14
        x = self.inception4c(x)
        # N x 512 x 14 x 14
        x = self.inception4d(x)
        # N x 528 x 14 x 14
        if self.aux_logits and self.training:
            aux2 = self.aux2(x)

        x = self.inception4e(x)
        # N x 832 x 14 x 14
        x = self.maxpool4(x)
        # N x 832 x 7 x 7
        x = self.inception5a(x)
        # N x 832 x 7 x 7
        x = self.inception5b(x)
        # N x 1024 x 7 x 7

        x = self.avgpool(x)
        # N x 1024 x 1 x 1
        x = torch.flatten(x, start_dim=1)
        # N x 1024
        x = self.dropout(x)
        x = self.fc(x)

        if self.aux_logits and self.training:
            return x, aux2, aux1
        return x

    def _init_weight(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)

            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)


class Inception(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
        super(Inception, self).__init__()

        self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)

        self.branch2 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3red, kernel_size=1),
            BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)
        )

        self.branch3 = nn.Sequential(
            BasicConv2d(in_channels, ch5x5red, kernel_size=1),
            BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2)
        )

        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            BasicConv2d(in_channels, pool_proj, kernel_size=1)
        )

    def forward(self, x):
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)

        outputs = [branch1, branch2, branch3, branch4]
        return torch.cat(outputs, dim=1)


class InceptionAux(nn.Module):
    def __init__(self, in_channels, num_classes):
        super(InceptionAux, self).__init__()
        self.averagePool = nn.AdaptiveAvgPool2d((4, 4))
        self.conv = BasicConv2d(in_channels, 128, kernel_size=1)

        self.aux_classifier = nn.Sequential(
            nn.Linear(128 * 4 * 4, 1024),
            nn.Dropout(p=0.5),
            nn.ReLU(inplace=True),
            nn.Linear(1024, num_classes)
        )

    def forward(self, x):
        x = self.averagePool(x)
        x = self.conv(x)
        x = torch.flatten(x, start_dim=1)
        x = self.aux_classifier(x)
        return x


class BasicConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.conv(x)
        x = self.relu(x)
        return x

运行输出Flops

'''
 module name   input shape  output shape     params memory(MB)             MAdd            Flops  MemRead(B)  MemWrite(B) duration[%]    MemR+W(B)
0                      conv1.conv     3 224 224    64 112 112     9472.0       3.06    236,027,904.0    118,816,768.0    640000.0    3211264.0      24.30%    3851264.0
1                      conv1.relu    64 112 112    64 112 112        0.0       3.06        802,816.0        802,816.0   3211264.0    3211264.0       2.83%    6422528.0
2                        maxpool1    64 112 112    64  56  56        0.0       0.77      1,605,632.0        802,816.0   3211264.0     802816.0       5.08%    4014080.0
3                      conv2.conv    64  56  56    64  56  56     4160.0       0.77     25,690,112.0     13,045,760.0    819456.0     802816.0       1.70%    1622272.0
4                      conv2.relu    64  56  56    64  56  56        0.0       0.77        200,704.0        200,704.0    802816.0     802816.0       0.00%    1605632.0
5                      conv3.conv    64  56  56   192  56  56   110784.0       2.30    693,633,024.0    347,418,624.0   1245952.0    2408448.0       3.96%    3654400.0
6                      conv3.relu   192  56  56   192  56  56        0.0       2.30        602,112.0        602,112.0   2408448.0    2408448.0       0.56%    4816896.0
7                        maxpool2   192  56  56   192  28  28        0.0       0.57      1,204,224.0        602,112.0   2408448.0     602112.0       1.13%    3010560.0
8        inception3a.branch1.conv   192  28  28    64  28  28    12352.0       0.19     19,267,584.0      9,683,968.0    651520.0     200704.0       1.13%     852224.0
9        inception3a.branch1.relu    64  28  28    64  28  28        0.0       0.19         50,176.0         50,176.0    200704.0     200704.0       0.00%     401408.0
10     inception3a.branch2.0.conv   192  28  28    96  28  28    18528.0       0.29     28,901,376.0     14,525,952.0    676224.0     301056.0       1.13%     977280.0
11     inception3a.branch2.0.relu    96  28  28    96  28  28        0.0       0.29         75,264.0         75,264.0    301056.0     301056.0       0.00%     602112.0
12     inception3a.branch2.1.conv    96  28  28   128  28  28   110720.0       0.38    173,408,256.0     86,804,480.0    743936.0     401408.0       1.69%    1145344.0
13     inception3a.branch2.1.relu   128  28  28   128  28  28        0.0       0.38        100,352.0        100,352.0    401408.0     401408.0       0.00%     802816.0
14     inception3a.branch3.0.conv   192  28  28    16  28  28     3088.0       0.05      4,816,896.0      2,420,992.0    614464.0      50176.0       0.56%     664640.0
15     inception3a.branch3.0.relu    16  28  28    16  28  28        0.0       0.05         12,544.0         12,544.0     50176.0      50176.0       0.00%     100352.0
16     inception3a.branch3.1.conv    16  28  28    32  28  28    12832.0       0.10     20,070,400.0     10,060,288.0    101504.0     100352.0       0.56%     201856.0
17     inception3a.branch3.1.relu    32  28  28    32  28  28        0.0       0.10         25,088.0         25,088.0    100352.0     100352.0       0.00%     200704.0
18          inception3a.branch4.0   192  28  28   192  28  28        0.0       0.57      1,204,224.0        150,528.0    602112.0     602112.0       1.70%    1204224.0
19     inception3a.branch4.1.conv   192  28  28    32  28  28     6176.0       0.10      9,633,792.0      4,841,984.0    626816.0     100352.0       0.57%     727168.0
20     inception3a.branch4.1.relu    32  28  28    32  28  28        0.0       0.10         25,088.0         25,088.0    100352.0     100352.0       0.00%     200704.0
21       inception3b.branch1.conv   256  28  28   128  28  28    32896.0       0.38     51,380,224.0     25,790,464.0    934400.0     401408.0       1.13%    1335808.0
22       inception3b.branch1.relu   128  28  28   128  28  28        0.0       0.38        100,352.0        100,352.0    401408.0     401408.0       0.00%     802816.0
23     inception3b.branch2.0.conv   256  28  28   128  28  28    32896.0       0.38     51,380,224.0     25,790,464.0    934400.0     401408.0       0.56%    1335808.0
24     inception3b.branch2.0.relu   128  28  28   128  28  28        0.0       0.38        100,352.0        100,352.0    401408.0     401408.0       0.00%     802816.0
25     inception3b.branch2.1.conv   128  28  28   192  28  28   221376.0       0.57    346,816,512.0    173,558,784.0   1286912.0     602112.0       2.26%    1889024.0
26     inception3b.branch2.1.relu   192  28  28   192  28  28        0.0       0.57        150,528.0        150,528.0    602112.0     602112.0       0.00%    1204224.0
27     inception3b.branch3.0.conv   256  28  28    32  28  28     8224.0       0.10     12,845,056.0      6,447,616.0    835712.0     100352.0       0.56%     936064.0
28     inception3b.branch3.0.relu    32  28  28    32  28  28        0.0       0.10         25,088.0         25,088.0    100352.0     100352.0       0.00%     200704.0
29     inception3b.branch3.1.conv    32  28  28    96  28  28    76896.0       0.29    120,422,400.0     60,286,464.0    407936.0     301056.0       0.56%     708992.0
30     inception3b.branch3.1.relu    96  28  28    96  28  28        0.0       0.29         75,264.0         75,264.0    301056.0     301056.0       0.00%     602112.0
31          inception3b.branch4.0   256  28  28   256  28  28        0.0       0.77      1,605,632.0        200,704.0    802816.0     802816.0       1.69%    1605632.0
32     inception3b.branch4.1.conv   256  28  28    64  28  28    16448.0       0.19     25,690,112.0     12,895,232.0    868608.0     200704.0       0.57%    1069312.0
33     inception3b.branch4.1.relu    64  28  28    64  28  28        0.0       0.19         50,176.0         50,176.0    200704.0     200704.0       0.00%     401408.0
34                       maxpool3   480  28  28   480  14  14        0.0       0.36        752,640.0        376,320.0   1505280.0     376320.0       0.57%    1881600.0
35       inception4a.branch1.conv   480  14  14   192  14  14    92352.0       0.14     36,126,720.0     18,100,992.0    745728.0     150528.0       1.13%     896256.0
36       inception4a.branch1.relu   192  14  14   192  14  14        0.0       0.14         37,632.0         37,632.0    150528.0     150528.0       0.00%     301056.0
37     inception4a.branch2.0.conv   480  14  14    96  14  14    46176.0       0.07     18,063,360.0      9,050,496.0    561024.0      75264.0       0.56%     636288.0
38     inception4a.branch2.0.relu    96  14  14    96  14  14        0.0       0.07         18,816.0         18,816.0     75264.0      75264.0       0.00%     150528.0
39     inception4a.branch2.1.conv    96  14  14   208  14  14   179920.0       0.16     70,447,104.0     35,264,320.0    794944.0     163072.0       5.65%     958016.0
40     inception4a.branch2.1.relu   208  14  14   208  14  14        0.0       0.16         40,768.0         40,768.0    163072.0     163072.0       0.00%     326144.0
41     inception4a.branch3.0.conv   480  14  14    16  14  14     7696.0       0.01      3,010,560.0      1,508,416.0    407104.0      12544.0       0.00%     419648.0
42     inception4a.branch3.0.relu    16  14  14    16  14  14        0.0       0.01          3,136.0          3,136.0     12544.0      12544.0       0.00%      25088.0
43     inception4a.branch3.1.conv    16  14  14    48  14  14    19248.0       0.04      7,526,400.0      3,772,608.0     89536.0      37632.0       0.57%     127168.0
44     inception4a.branch3.1.relu    48  14  14    48  14  14        0.0       0.04          9,408.0          9,408.0     37632.0      37632.0       0.00%      75264.0
45          inception4a.branch4.0   480  14  14   480  14  14        0.0       0.36        752,640.0         94,080.0    376320.0     376320.0       1.13%     752640.0
46     inception4a.branch4.1.conv   480  14  14    64  14  14    30784.0       0.05     12,042,240.0      6,033,664.0    499456.0      50176.0       0.57%     549632.0
47     inception4a.branch4.1.relu    64  14  14    64  14  14        0.0       0.05         12,544.0         12,544.0     50176.0      50176.0       0.00%     100352.0
48       inception4b.branch1.conv   512  14  14   160  14  14    82080.0       0.12     32,112,640.0     16,087,680.0    729728.0     125440.0       0.56%     855168.0
49       inception4b.branch1.relu   160  14  14   160  14  14        0.0       0.12         31,360.0         31,360.0    125440.0     125440.0       0.00%     250880.0
50     inception4b.branch2.0.conv   512  14  14   112  14  14    57456.0       0.08     22,478,848.0     11,261,376.0    631232.0      87808.0       0.00%     719040.0
51     inception4b.branch2.0.relu   112  14  14   112  14  14        0.0       0.08         21,952.0         21,952.0     87808.0      87808.0       0.00%     175616.0
52     inception4b.branch2.1.conv   112  14  14   224  14  14   226016.0       0.17     88,510,464.0     44,299,136.0    991872.0     175616.0       0.57%    1167488.0
53     inception4b.branch2.1.relu   224  14  14   224  14  14        0.0       0.17         43,904.0         43,904.0    175616.0     175616.0       0.00%     351232.0
54     inception4b.branch3.0.conv   512  14  14    24  14  14    12312.0       0.02      4,816,896.0      2,413,152.0    450656.0      18816.0       0.00%     469472.0
55     inception4b.branch3.0.relu    24  14  14    24  14  14        0.0       0.02          4,704.0          4,704.0     18816.0      18816.0       0.00%      37632.0
56     inception4b.branch3.1.conv    24  14  14    64  14  14    38464.0       0.05     15,052,800.0      7,538,944.0    172672.0      50176.0       0.57%     222848.0
57     inception4b.branch3.1.relu    64  14  14    64  14  14        0.0       0.05         12,544.0         12,544.0     50176.0      50176.0       0.00%     100352.0
58          inception4b.branch4.0   512  14  14   512  14  14        0.0       0.38        802,816.0        100,352.0    401408.0     401408.0       1.13%     802816.0
59     inception4b.branch4.1.conv   512  14  14    64  14  14    32832.0       0.05     12,845,056.0      6,435,072.0    532736.0      50176.0       0.56%     582912.0
60     inception4b.branch4.1.relu    64  14  14    64  14  14        0.0       0.05         12,544.0         12,544.0     50176.0      50176.0       0.00%     100352.0
61       inception4c.branch1.conv   512  14  14   128  14  14    65664.0       0.10     25,690,112.0     12,870,144.0    664064.0     100352.0       0.56%     764416.0
62       inception4c.branch1.relu   128  14  14   128  14  14        0.0       0.10         25,088.0         25,088.0    100352.0     100352.0       0.00%     200704.0
63     inception4c.branch2.0.conv   512  14  14   128  14  14    65664.0       0.10     25,690,112.0     12,870,144.0    664064.0     100352.0       0.56%     764416.0
64     inception4c.branch2.0.relu   128  14  14   128  14  14        0.0       0.10         25,088.0         25,088.0    100352.0     100352.0       0.00%     200704.0
65     inception4c.branch2.1.conv   128  14  14   256  14  14   295168.0       0.19    115,605,504.0     57,852,928.0   1281024.0     200704.0       1.13%    1481728.0
66     inception4c.branch2.1.relu   256  14  14   256  14  14        0.0       0.19         50,176.0         50,176.0    200704.0     200704.0       0.00%     401408.0
67     inception4c.branch3.0.conv   512  14  14    24  14  14    12312.0       0.02      4,816,896.0      2,413,152.0    450656.0      18816.0       0.57%     469472.0
68     inception4c.branch3.0.relu    24  14  14    24  14  14        0.0       0.02          4,704.0          4,704.0     18816.0      18816.0       0.00%      37632.0
69     inception4c.branch3.1.conv    24  14  14    64  14  14    38464.0       0.05     15,052,800.0      7,538,944.0    172672.0      50176.0       0.00%     222848.0
70     inception4c.branch3.1.relu    64  14  14    64  14  14        0.0       0.05         12,544.0         12,544.0     50176.0      50176.0       0.00%     100352.0
71          inception4c.branch4.0   512  14  14   512  14  14        0.0       0.38        802,816.0        100,352.0    401408.0     401408.0       1.13%     802816.0
72     inception4c.branch4.1.conv   512  14  14    64  14  14    32832.0       0.05     12,845,056.0      6,435,072.0    532736.0      50176.0       0.00%     582912.0
73     inception4c.branch4.1.relu    64  14  14    64  14  14        0.0       0.05         12,544.0         12,544.0     50176.0      50176.0       0.00%     100352.0
74       inception4d.branch1.conv   512  14  14   112  14  14    57456.0       0.08     22,478,848.0     11,261,376.0    631232.0      87808.0       0.00%     719040.0
75       inception4d.branch1.relu   112  14  14   112  14  14        0.0       0.08         21,952.0         21,952.0     87808.0      87808.0       0.00%     175616.0
76     inception4d.branch2.0.conv   512  14  14   144  14  14    73872.0       0.11     28,901,376.0     14,478,912.0    696896.0     112896.0       0.00%     809792.0
77     inception4d.branch2.0.relu   144  14  14   144  14  14        0.0       0.11         28,224.0         28,224.0    112896.0     112896.0       0.00%     225792.0
78     inception4d.branch2.1.conv   144  14  14   288  14  14   373536.0       0.22    146,313,216.0     73,213,056.0   1607040.0     225792.0       1.13%    1832832.0
79     inception4d.branch2.1.relu   288  14  14   288  14  14        0.0       0.22         56,448.0         56,448.0    225792.0     225792.0       0.00%     451584.0
80     inception4d.branch3.0.conv   512  14  14    32  14  14    16416.0       0.02      6,422,528.0      3,217,536.0    467072.0      25088.0       0.57%     492160.0
81     inception4d.branch3.0.relu    32  14  14    32  14  14        0.0       0.02          6,272.0          6,272.0     25088.0      25088.0       0.00%      50176.0
82     inception4d.branch3.1.conv    32  14  14    64  14  14    51264.0       0.05     20,070,400.0     10,047,744.0    230144.0      50176.0       0.56%     280320.0
83     inception4d.branch3.1.relu    64  14  14    64  14  14        0.0       0.05         12,544.0         12,544.0     50176.0      50176.0       0.00%     100352.0
84          inception4d.branch4.0   512  14  14   512  14  14        0.0       0.38        802,816.0        100,352.0    401408.0     401408.0       1.13%     802816.0
85     inception4d.branch4.1.conv   512  14  14    64  14  14    32832.0       0.05     12,845,056.0      6,435,072.0    532736.0      50176.0       0.00%     582912.0
86     inception4d.branch4.1.relu    64  14  14    64  14  14        0.0       0.05         12,544.0         12,544.0     50176.0      50176.0       0.00%     100352.0
87       inception4e.branch1.conv   528  14  14   256  14  14   135424.0       0.19     52,985,856.0     26,543,104.0    955648.0     200704.0       0.56%    1156352.0
88       inception4e.branch1.relu   256  14  14   256  14  14        0.0       0.19         50,176.0         50,176.0    200704.0     200704.0       0.00%     401408.0
89     inception4e.branch2.0.conv   528  14  14   160  14  14    84640.0       0.12     33,116,160.0     16,589,440.0    752512.0     125440.0       0.00%     877952.0
90     inception4e.branch2.0.relu   160  14  14   160  14  14        0.0       0.12         31,360.0         31,360.0    125440.0     125440.0       0.00%     250880.0
91     inception4e.branch2.1.conv   160  14  14   320  14  14   461120.0       0.24    180,633,600.0     90,379,520.0   1969920.0     250880.0       1.13%    2220800.0
92     inception4e.branch2.1.relu   320  14  14   320  14  14        0.0       0.24         62,720.0         62,720.0    250880.0     250880.0       0.00%     501760.0
93     inception4e.branch3.0.conv   528  14  14    32  14  14    16928.0       0.02      6,623,232.0      3,317,888.0    481664.0      25088.0       0.00%     506752.0
94     inception4e.branch3.0.relu    32  14  14    32  14  14        0.0       0.02          6,272.0          6,272.0     25088.0      25088.0       0.00%      50176.0
95     inception4e.branch3.1.conv    32  14  14   128  14  14   102528.0       0.10     40,140,800.0     20,095,488.0    435200.0     100352.0       0.56%     535552.0
96     inception4e.branch3.1.relu   128  14  14   128  14  14        0.0       0.10         25,088.0         25,088.0    100352.0     100352.0       0.00%     200704.0
97          inception4e.branch4.0   528  14  14   528  14  14        0.0       0.39        827,904.0        103,488.0    413952.0     413952.0       0.56%     827904.0
98     inception4e.branch4.1.conv   528  14  14   128  14  14    67712.0       0.10     26,492,928.0     13,271,552.0    684800.0     100352.0       0.57%     785152.0
99     inception4e.branch4.1.relu   128  14  14   128  14  14        0.0       0.10         25,088.0         25,088.0    100352.0     100352.0       0.00%     200704.0
100                      maxpool4   832  14  14   832   7   7        0.0       0.16        326,144.0        163,072.0    652288.0     163072.0       0.00%     815360.0
101      inception5a.branch1.conv   832   7   7   256   7   7   213248.0       0.05     20,873,216.0     10,449,152.0   1016064.0      50176.0       2.26%    1066240.0
102      inception5a.branch1.relu   256   7   7   256   7   7        0.0       0.05         12,544.0         12,544.0     50176.0      50176.0       0.00%     100352.0
103    inception5a.branch2.0.conv   832   7   7   160   7   7   133280.0       0.03     13,045,760.0      6,530,720.0    696192.0      31360.0       0.56%     727552.0
104    inception5a.branch2.0.relu   160   7   7   160   7   7        0.0       0.03          7,840.0          7,840.0     31360.0      31360.0       0.56%      62720.0
105    inception5a.branch2.1.conv   160   7   7   320   7   7   461120.0       0.06     45,158,400.0     22,594,880.0   1875840.0      62720.0       1.13%    1938560.0
106    inception5a.branch2.1.relu   320   7   7   320   7   7        0.0       0.06         15,680.0         15,680.0     62720.0      62720.0       0.00%     125440.0
107    inception5a.branch3.0.conv   832   7   7    32   7   7    26656.0       0.01      2,609,152.0      1,306,144.0    269696.0       6272.0       0.00%     275968.0
108    inception5a.branch3.0.relu    32   7   7    32   7   7        0.0       0.01          1,568.0          1,568.0      6272.0       6272.0       0.00%      12544.0
109    inception5a.branch3.1.conv    32   7   7   128   7   7   102528.0       0.02     10,035,200.0      5,023,872.0    416384.0      25088.0       0.56%     441472.0
110    inception5a.branch3.1.relu   128   7   7   128   7   7        0.0       0.02          6,272.0          6,272.0     25088.0      25088.0       0.00%      50176.0
111         inception5a.branch4.0   832   7   7   832   7   7        0.0       0.16        326,144.0         40,768.0    163072.0     163072.0       0.57%     326144.0
112    inception5a.branch4.1.conv   832   7   7   128   7   7   106624.0       0.02     10,436,608.0      5,224,576.0    589568.0      25088.0       0.56%     614656.0
113    inception5a.branch4.1.relu   128   7   7   128   7   7        0.0       0.02          6,272.0          6,272.0     25088.0      25088.0       0.00%      50176.0
114      inception5b.branch1.conv   832   7   7   384   7   7   319872.0       0.07     31,309,824.0     15,673,728.0   1442560.0      75264.0       1.13%    1517824.0
115      inception5b.branch1.relu   384   7   7   384   7   7        0.0       0.07         18,816.0         18,816.0     75264.0      75264.0       0.56%     150528.0
116    inception5b.branch2.0.conv   832   7   7   192   7   7   159936.0       0.04     15,654,912.0      7,836,864.0    802816.0      37632.0       0.56%     840448.0
117    inception5b.branch2.0.relu   192   7   7   192   7   7        0.0       0.04          9,408.0          9,408.0     37632.0      37632.0       0.00%      75264.0
118    inception5b.branch2.1.conv   192   7   7   384   7   7   663936.0       0.07     65,028,096.0     32,532,864.0   2693376.0      75264.0       0.56%    2768640.0
119    inception5b.branch2.1.relu   384   7   7   384   7   7        0.0       0.07         18,816.0         18,816.0     75264.0      75264.0       0.00%     150528.0
120    inception5b.branch3.0.conv   832   7   7    48   7   7    39984.0       0.01      3,913,728.0      1,959,216.0    323008.0       9408.0       0.56%     332416.0
121    inception5b.branch3.0.relu    48   7   7    48   7   7        0.0       0.01          2,352.0          2,352.0      9408.0       9408.0       0.00%      18816.0
122    inception5b.branch3.1.conv    48   7   7   128   7   7   153728.0       0.02     15,052,800.0      7,532,672.0    624320.0      25088.0       1.13%     649408.0
123    inception5b.branch3.1.relu   128   7   7   128   7   7        0.0       0.02          6,272.0          6,272.0     25088.0      25088.0       0.00%      50176.0
124         inception5b.branch4.0   832   7   7   832   7   7        0.0       0.16        326,144.0         40,768.0    163072.0     163072.0       0.56%     326144.0
125    inception5b.branch4.1.conv   832   7   7   128   7   7   106624.0       0.02     10,436,608.0      5,224,576.0    589568.0      25088.0       0.57%     614656.0
126    inception5b.branch4.1.relu   128   7   7   128   7   7        0.0       0.02          6,272.0          6,272.0     25088.0      25088.0       0.00%      50176.0
127              aux1.averagePool     0   0   0     0   0   0        0.0       0.00              0.0              0.0         0.0          0.0       0.00%          0.0
128                aux1.conv.conv     0   0   0     0   0   0        0.0       0.00              0.0              0.0         0.0          0.0       0.00%          0.0
129                aux1.conv.relu     0   0   0     0   0   0        0.0       0.00              0.0              0.0         0.0          0.0       0.00%          0.0
130         aux1.aux_classifier.0     0   0   0     0   0   0        0.0       0.00              0.0              0.0         0.0          0.0       0.00%          0.0
131         aux1.aux_classifier.1     0   0   0     0   0   0        0.0       0.00              0.0              0.0         0.0          0.0       0.00%          0.0
132         aux1.aux_classifier.2     0   0   0     0   0   0        0.0       0.00              0.0              0.0         0.0          0.0       0.00%          0.0
133         aux1.aux_classifier.3     0   0   0     0   0   0        0.0       0.00              0.0              0.0         0.0          0.0       0.00%          0.0
134              aux2.averagePool     0   0   0     0   0   0        0.0       0.00              0.0              0.0         0.0          0.0       0.00%          0.0
135                aux2.conv.conv     0   0   0     0   0   0        0.0       0.00              0.0              0.0         0.0          0.0       0.00%          0.0
136                aux2.conv.relu     0   0   0     0   0   0        0.0       0.00              0.0              0.0         0.0          0.0       0.00%          0.0
137         aux2.aux_classifier.0     0   0   0     0   0   0        0.0       0.00              0.0              0.0         0.0          0.0       0.00%          0.0
138         aux2.aux_classifier.1     0   0   0     0   0   0        0.0       0.00              0.0              0.0         0.0          0.0       0.00%          0.0
139         aux2.aux_classifier.2     0   0   0     0   0   0        0.0       0.00              0.0              0.0         0.0          0.0       0.00%          0.0
140         aux2.aux_classifier.3     0   0   0     0   0   0        0.0       0.00              0.0              0.0         0.0          0.0       0.00%          0.0
141                       avgpool  1024   7   7  1024   1   1        0.0       0.00              0.0              0.0         0.0          0.0       5.08%          0.0
142                       dropout          1024          1024        0.0       0.00              0.0              0.0         0.0          0.0       0.00%          0.0
143                            fc          1024          1000  1025000.0       0.00      2,047,000.0      1,024,000.0   4104096.0       4000.0       4.52%    4108096.0
total                                                          6998552.0      30.03  3,179,908,680.0  1,591,999,904.0   4104096.0       4000.0     100.00%  102538752.0
=======================================================================================================================================================================
Total params: 6,998,552
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
Total memory: 30.03MB
Total MAdd: 3.18GMAdd
Total Flops: 1.59GFlops
Total MemR+W: 97.79MB
'''

Inception v2

论文:《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》。

Inception v3

论文:《Rethinking the Inception Architecture for Computer Vision》

你可能感兴趣的:(深度学习之pytorch,python)