- 目标检测YOLO实战应用案例100讲-基于毫米波雷达与摄像头协同的道路目标检测与识别(续)
林聪木
目标检测YOLO人工智能
目录3.2实测数据采集与分析3.2.1回波数据处理3.2.2毫米波雷达数据采集实验3.3基于传统图像特征的目标识别算法3.3.1基于灰度共生矩阵的时频图特征提取3.3.2支持向量机分类器3.3.3实验及结果分析3.4基于卷积神经网络的目标识别算法3.4.1卷积神经网络的基本理论3.4.2卷积神经网络框架设计3.4.3实验及结果分析基于图像的目标检测算法4.1目标检测算法一般流程4.2典型目标检测算
- 基于人工智能的智能视频内容分析系统
小彭律师
python
基于人工智能的智能视频内容分析系统系统功能1.视频数据预处理降噪与滤波:去除视频画面中的噪点和干扰画质增强:调整亮度、对比度和色彩平衡关键帧提取:减少数据量,提取关键信息2.目标识别检测基于深度学习模型(YOLO、FasterR-CNN等)识别多种目标类型(人、车辆、物品等)适应不同光照、角度和遮挡情况输出目标位置、类别和置信度3.行为分析研判基于时序模型(LSTM、3D-CNN等)分析目标动作规
- 4D雷达再上热搜!华为/小米上车
高工智能汽车
自动驾驶人工智能汽车
智驾能力边界的不断抬升,对于传感器的要求仍在增加。去年至今,不管是端到端,还是大模型,本质上并没有解决摄像头(视觉感知)的物理性能缺陷;激光雷达处于成本下降区间,安全冗余作用明显,但对于恶劣天气、穿透能力以及抗干扰性仍存在劣势。而毫米波雷达“全天候全天时”工作的能力恰恰是最好的补充;同时,随着4D成像雷达技术的成熟,也解决了过去一直存在的目标识别精度有限、分辨率低以及高程探测能力有限等问题。尤其是
- Faster R-CNN原理详解以及Pytorch实现模型训练与推理
阿_旭
深度学习实战cnnpytorch人工智能FasterRCNN
《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【YOLOv8多目标识别与自动标注软件开发】8.【基于深度学习的行人跌倒检测系统】9.【基于深度学习的PCB板缺陷检测系统
- 无人机动态追踪技术难点与距离分析!
云卓SKYDROID
无人机人工智能云卓科技智能跟踪吊舱
一、技术难点概述目标识别与跟踪算法的鲁棒性复杂场景适应性**:在动态背景(如人群、森林)或光照变化(逆光、夜间)下,算法需精准区分目标与干扰物。传统计算机视觉方法(如光流法、卡尔曼滤波)易受干扰,需结合深度学习(如YOLO、SiamRPN++)提升抗干扰能力。多目标跟踪与遮挡处理**:目标被遮挡或短暂消失时,需通过轨迹预测或特征匹配恢复跟踪,对算法的记忆能力和实时性要求极高。实时性要求**:算法需
- 基于PyTorch的深度学习——机器学习1
Wis4e
深度学习机器学习pytorch
监督学习是最常见的一种机器学习类型,其任务的特点就是给定学习目标,这个学习目标又称标签、标注或实际值等,整个学习过程就是围绕如何使预测与目标更接近而来的。近些年,随着深度学习的发展,分类除传统的二分类、多分类、多标签分类之外,也出现了一些新内容,如目标检测、目标识别、图像分割等监督学习的重要内容半监督学习是监督学习与无监督学习相结合的一种学习方法。半监督学习使用大量的未标记数据,同时由部分使用标记
- 【基于国产RK3588-NPU的yolov5的AI智能盒子】
贝壳里的沙
人工智能
基于国产RK3588-NPU的yolov5的AI智能盒子背景识别效果区别Python版本目标识别实现cmake(c/c++)版本实现背景前面写了一篇关于基YOLOV5实现的AI智能盒子的实现方案,这篇文章着重讲了如何在NVIDIA-英伟达芯片上如何实现目标识别的过程(可能已经被官方屏蔽了)。但是因为中美芯片限制问题,很多朋友联系到我,跟我提了是否可以基于国产芯片来迁移yolov5框架平台?国产芯片
- 在 PiscTrace 上使用 YOLO 进行预测与 MiDaS 景深补偿:体验纯视觉自动驾驶的数据分析
那雨倾城
PiscTrace人工智能计算机视觉图像处理自动驾驶YOLO视觉检测
随着自动驾驶技术的不断发展,视觉感知系统逐渐成为车辆感知的核心组件。PiscTrace作为一款支持高效视图处理的桌面应用,集成了先进的计算机视觉工具,如YOLO目标检测模型和MiDaS景深估计模型,能够为纯视觉自动驾驶的实现提供强大的支持。通过这两个模型的结合,PiscTrace可以提供高精度的目标识别与环境感知功能,帮助用户进行实时的驾驶数据分析,为决策系统提供宝贵的数据支持。本文将详细介绍如何
- 基于RK3588的AI摄像头应用解决方案
浙江启扬智能科技有限公司
linuxARM嵌入式开发嵌入式硬件
随着人工智能(AI)技术的快速发展,越来越多的视频监控系统开始直接在摄像头上部署AI分析,视频监控从早期的图像记录发展到如今具备AI运算能力和算法,可进行目标识别、行为分析以及事件反馈,实现从被动记录到主动预警的转变。目前有三种算力部署方式:AI分析部署在云端、AI分析部署在边缘、AI分析部署在摄像头,也就是我们常说的云,边,端。但越来越多的摄像头本身就集成了AI分析能力,这一趋势的出现存在多方面
- 拦阻式干扰matlab,16号数据链干扰战术应用研究
weixin_39932330
拦阻式干扰matlab
1引言16号数据链是当前西方国家用于C4ISR系统的主要战术数据链。相对于Link-11来说,它在抗干扰、保密、数据吞吐量、信息交换量、终端体积、导航、精确定位和目标识别等方面都有明显的进步,16号数据链采用时分多址(TDMA)方式组网,不再需要网络控制站,网络成为一个无关键节点的系统;为了提高通信容量,16号数据链采用栈网和多重网操作,同一时隙被分配给多个具有特定功能的网络参与群(NPG),通过
- yolo目标检测项目
m0_75047393
YOLO目标检测人工智能
一、前言(一)、什么是目标检测目标检测是指在图像或视频中准确地识别和定位出现的特定目标物体的任务。目标检测通常包括以下几个步骤:目标分类:确定图像中出现的物体属于哪一类别,例如汽车、行人、狗等。目标定位:确定图像中物体的位置,通常通过绘制边界框或遮罩来标识物体的位置。目标识别:将检测到的目标与预定义的类别进行匹配,以便为目标添加语义标签。多目标检测:在一张图像中检测并识别多个目标,包括重叠目标和不
- 2025最新Python机器视觉实战:基于OpenCV与YOLOv8的实时目标检测与跟踪(附完整代码)
emmm形成中
pythonopencvYOLO
2025最新Python机器视觉实战:基于OpenCV与YOLOv8的实时目标检测与跟踪(附完整代码)摘要:本文基于OpenCV与YOLOv8模型,实现实时目标检测与跟踪功能,支持多类别目标识别与运动轨迹绘制。代码兼容Python3.7+,步骤清晰且经过稳定性测试,适合中高级开发者参考。所有依赖库均为最新版本,确保运行流畅。一、环境准备安装依赖库pipinstallopencv-python==4
- 动态蛇形卷积在YOLOv8中的探索与实践:提高目标识别与定位精度
向哆哆
YOLO目标跟踪深度学习YOLOv8
文章目录动态蛇形卷积在YOLOv8中的探索与实践:提高目标识别与定位精度1.什么是动态蛇形卷积?2.YOLOv8的卷积改进2.1常规卷积与动态蛇形卷积的区别2.2动态蛇形卷积的实现原理2.3YOLOv8中集成动态蛇形卷积3.手把手实现动态蛇形卷积3.1安装依赖3.2设计动态蛇形卷积层3.3集成到YOLOv8中3.4训练与优化4.动态蛇形卷积的进一步优化4.1蛇形路径的动态学习4.1.1学习动态路径
- 基于python深度学习遥感影像地物分类与目标识别、分割实践技术应用
xiao5kou4chang6kai4
深度学习遥感勘测python深度学习分类
专题一:深度学习发展与机器学习深度学习的历史发展过程机器学习,深度学习等任务的基本处理流程梯度下降算法讲解不同初始化,学习率对梯度下降算法的实例分析从机器学习到深度学习算法专题二深度卷积网络、卷积神经网络、卷积运算的基本原理池化操作,全连接层,以及分类器的作用BP反向传播算法的理解一个简单CNN模型代码理解特征图,卷积核可视化分析专题三TensorFlow与keras介绍与入门TensorFlow
- 双光吊舱应用行业!!
云卓SKYDROID
无人机云卓科技知识高科技双光吊舱
1.军事领域侦察与监视:双光吊舱能够全天候、全气候地提供高清图像数据,支持军事侦察和监视任务。通过可见光相机和红外热成像仪的结合,吊舱可以在白天和夜晚、晴天和恶劣天气条件下,为无人机等空中平台提供清晰的战场图像,帮助指挥人员做出准确的决策。目标识别与跟踪:吊舱内置的目标识别算法能够实现对远距离目标的追踪、摄像和监控,特别是在夜间或恶劣天气条件下,红外热成像技术能够发挥重要作用。远程打击:无人机搭载
- 双目立体视觉(1)
2501_90596733
双目立体视觉人工智能计算机视觉
1.背景计算机视觉技术,是以摄像头作为传感器来获取二维图像数据,并依靠计算机运用各类算法对这些图像数据展开处理。依据所采用视觉传感器数量的差异,可分为单目、双目以及多目视觉这几类。单目视觉依赖单摄像头获取二维平面图像,在知晓物体实际尺寸的前提下,结合相机成像模型能够计算出距离,但这种单一的2D图像在深度感知能力上存在局限,且较易受到动态背景的干扰,通常被应用于缺陷检测、目标识别等相关领域。多目视觉
- 无人机目标追踪技术
kely117
无人机
无人机目标追踪是指通过无人机搭载的传感器和计算系统,实时跟踪和定位特定目标的技术:传感器技术:无人机通常配备摄像头、雷达、激光雷达等传感器,用于捕捉目标的图像和距离信息。图像处理与计算机视觉:通过先进的图像处理和计算机视觉算法,无人机能够从传感器获取的原始数据中提取有用的信息,如目标的位置、形状和运动轨迹。目标识别与跟踪算法:采用机器学习和深度学习算法,无人机能够识别和分类不同的目标,并对目标进行
- 无人机系统组合方案技术详解,提升复杂环境作业效能
无人机技术圈
无人机技术无人机
无人机系统组合方案技术旨在提升无人机在复杂环境中的作业效能。以下是对该技术的详细解析:一、无人机系统组合方案概述无人机系统组合方案通常包括无人机机体、飞控系统、通信设备、电池、地面控制站设备、操作系统和数据库等多个组成部分。这些部分共同协作,为无人机提供自主飞行控制、数据采集与处理、任务规划与执行等功能。二、提升复杂环境作业效能的关键技术1.AI算法引擎目标识别:无人机通过集成的人工智能算法,能够
- yolo目标识别数据集
无人机长了一个脑袋
YOLO
在目标识别领域,在机器学习和计算机视觉中,使用YOLO(YouOnlyLookOnce)模型进行目标检测是一种常见的方法。为了使用YOLO进行目标识别,你需要准备一个适当的数据集。以下是关于如何准备和使用YOLO目标识别数据集的步骤:1.选择或创建数据集选择数据集:如果已经有现成的数据集,如COCO、PascalVOC、ImageNet等,可以直接使用。创建数据集:如果没有合适的现成数据集,你可以
- 无人机之传感器篇
云卓科技
无人机科技制造机器人安全
无人机的传感器系统是其实现自主飞行、导航、避障、目标识别和环境感知等功能的关键部分。以下是对无人机中常见传感器的详细解析:一、主要传感器类型GPS(全球卫星定位系统)功能:提供无人机的位置和导航信息。原理:通过接收卫星信号,确定无人机的经度、纬度、海拔高度、速度及航向等数据。惯性测量单元(IMU)组成:由加速度计和陀螺仪组成。功能:测量无人机的线性加速度和角速度,用于确定无人机的姿态、运动状态和位
- Python深度学习(使用 LSTM 生成文本)--学习笔记(十八)
呆萌的小透明
深度学习神经网络深度学习
第8章生成式深度学习人工智能模拟人类思维过程的可能性,并不局限于被动性任务(比如目标识别)和大多数反应性任务(比如驾驶汽车),它还包括创造性活动。的确,到目前为止,我们见到的人工智能艺术作品的水平还很低。人工智能还远远比不上人类编剧、画家和作曲家。但是,替代人类始终都不是我们要谈论的主题,人工智能不会替代我们自己的智能,而是会为我们的生活和工作带来更多的智能,即另一种类型的智能。在许多领域,特别是
- OPenCV和OPenGL的区别
zxz520zmg
opencv人工智能计算机视觉
OPenCV主要用来处理图像和视频,还涉及到一些机器学习的算法。专注于从图像中获取信息是用机器来理解图像。比如:视频降噪、运动物体的跟踪、目标识别(比如人脸识别)。OPenGL主要用于三维图形的渲染。专注于用机器绘制图像给人看。Graphics,3D绘图。Opencv是从图像到数据OpenGL是从数据到图像
- 深度学习,创新点,模型改进
揽星河@
计算机视觉机器学习深度学习python人工智能
深度学习添加创新点①在现有模型上添加自己的创新点②或者混合多个模型等等③提供创新点添加各种注意力机制,各种模型block。机器学习,目标检测,目标识别,语义分割,GAN,CNN等(只要是深度学习均可)编程语言限于Python,pytorch欢迎大家咨询~
- 深入了解OpenCVSharp中常见的图像处理功能
仰望大佬007
图像处理opencv计算机视觉c#
深入了解OpenCVSharp中常见的图像处理功能前言1.图像加载与保存2.图像基本操作3.图像滤波4.边缘检测5.图像分割6.特征检测与描述子7.目标识别与跟踪8.图像融合与拼接9.形状匹配与模板匹配10.颜色空间转换与直方图11.图像转换与绘制12.图像分类与机器学习13.高级图像处理算法14.GPU加速与并行计算前言OpenCVSharp是C#语言中用于图像处理和计算机视觉的开源库,它提供了
- [机器学习]详解transformer---小白篇
是安澜啊
深度学习神经网络
1.背景:Transformer是2017年的一篇论文《AttentionisAllYouNeed》提出的一种模型架构,这篇论文里只针对机器翻译这一种场景做了实验,并且由于encoder端是并行计算的,训练的时间被大大缩短了。全面击败了当时的SOTA,现阶段,Transformer在cv领域也是全面开花,基于transformer的目标识别,语义分割等算法也是经常屠榜。论文:[1706.03762
- YOLO系列详解(YOLOV1-YOLOV3)
X.AI666
深度学习yolo
YOLO算法简介本文主要介绍YOLO算法,包括YOLOv1、YOLOv2/YOLO9000和YOLOv3。YOLO算法作为one-stage目标检测算法最典型的代表,其基于深度神经网络进行对象的识别和定位,运行速度很快,可以用于实时系统。了解YOLO是对目标检测算法研究的一个必须步骤。目标检测思路目标检测属于计算机视觉的一个中层任务,该任务可以细化为目标定位与目标识别两个任务,简单来说,找到图片中
- 基于傅里叶变换和带通滤波器实现脑电信号EEG目标识别附Matlab实现
天天Matlab代码科研顾问
信号处理matlab
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍1.脑电信号EEG简介脑电信号(EEG)是大脑皮层神经元群体同步放电产生的生物电位,反映了大脑的电活动
- [文献翻译]Towards Good Practices for Very Deep Two-Stream ConvNets
夏迪End
摘要:深度卷积网络已经在静态图像目标识别中取得了了的巨大成功。但是,对于视频的动作识别,深度卷积网络的改进不是那么明显。我们认为这样子的结果可能有两个原因。首先,与图像中非常深的模型(例如VGGNet[13],GoogLeNet[15])相比,当前的网络体系结构(例如,双流ConvNets[12])相对较浅,因此它们的建模能力受到其深度的限制。其次,更重要的可能是,动作识别的训练数据集与Image
- 基于pytorch深度学习遥感影像地物分类与目标识别、分割实践技术应用
数字化信息化智能化解决方案
深度学习pytorch分类
基于PyTorch的深度学习遥感影像地物分类、目标识别与分割实践技术应用是一个涉及多个步骤的复杂过程。以下是一个基本的框架和实践技术应用的概述:数据收集与预处理:收集遥感影像数据,包括不同地物类别、不同分辨率和不同场景的数据。对遥感影像进行预处理,包括辐射定标、大气校正、几何校正等,使其更适合深度学习模型。数据增强:使用图像增强技术,如旋转、裁剪、翻转等,增加数据多样性,提高模型的泛化能力。构建深
- 小目标识别方法
LittroInno
人工智能目标识别
小目标识别是计算机视觉和人工智能领域中的一个重要研究方向,主要关注于如何有效地从图像或视频中识别尺寸较小、分辨率低的目标。这一任务在军事侦察、遥感图像分析、无人机监控、医学成像等多个领域有着广泛的应用。随着深度学习技术的发展,小目标识别的研究也取得了显著的进步。小目标识别面临的挑战主要包括目标尺寸小、易受背景干扰、目标特征不明显等问题。为了解决这些问题,研究者们提出了多种基于人工智能的方法,尤其是
- java Illegal overloaded getter method with ambiguous type for propert的解决
zwllxs
javajdk
好久不来iteye,今天又来看看,哈哈,今天碰到在编码时,反射中会抛出
Illegal overloaded getter method with ambiguous type for propert这么个东东,从字面意思看,是反射在获取getter时迷惑了,然后回想起java在boolean值在生成getter时,分别有is和getter,也许我们的反射对象中就有is开头的方法迷惑了jdk,
- IT人应当知道的10个行业小内幕
beijingjava
工作互联网
10. 虽然IT业的薪酬比其他很多行业要好,但有公司因此视你为其“佣人”。
尽管IT人士的薪水没有互联网泡沫之前要好,但和其他行业人士比较,IT人的薪资还算好点。在接下的几十年中,科技在商业和社会发展中所占分量会一直增加,所以我们完全有理由相信,IT专业人才的需求量也不会减少。
然而,正因为IT人士的薪水普遍较高,所以有些公司认为给了你这么多钱,就把你看成是公司的“佣人”,拥有你的支配
- java 实现自定义链表
CrazyMizzz
java数据结构
1.链表结构
链表是链式的结构
2.链表的组成
链表是由头节点,中间节点和尾节点组成
节点是由两个部分组成:
1.数据域
2.引用域
3.链表的实现
&nbs
- web项目发布到服务器后图片过一会儿消失
麦田的设计者
struts2上传图片永久保存
作为一名学习了android和j2ee的程序员,我们必须要意识到,客服端和服务器端的交互是很有必要的,比如你用eclipse写了一个web工程,并且发布到了服务器(tomcat)上,这时你在webapps目录下看到了你发布的web工程,你可以打开电脑的浏览器输入http://localhost:8080/工程/路径访问里面的资源。但是,有时你会突然的发现之前用struts2上传的图片
- CodeIgniter框架Cart类 name 不能设置中文的解决方法
IT独行者
CodeIgniterCart框架
今天试用了一下CodeIgniter的Cart类时遇到了个小问题,发现当name的值为中文时,就写入不了session。在这里特别提醒一下。 在CI手册里也有说明,如下:
$data = array(
'id' => 'sku_123ABC',
'qty' => 1,
'
- linux回收站
_wy_
linux回收站
今天一不小心在ubuntu下把一个文件移动到了回收站,我并不想删,手误了。我急忙到Nautilus下的回收站中准备恢复它,但是里面居然什么都没有。 后来我发现这是由于我删文件的地方不在HOME所在的分区,而是在另一个独立的Linux分区下,这是我专门用于开发的分区。而我删除的东东在分区根目录下的.Trash-1000/file目录下,相关的删除信息(删除时间和文件所在
- jquery回到页面顶端
知了ing
htmljquerycss
html代码:
<h1 id="anchor">页面标题</h1>
<div id="container">页面内容</div>
<p><a href="#anchor" class="topLink">回到顶端</a><
- B树、B-树、B+树、B*树
矮蛋蛋
B树
原文地址:
http://www.cnblogs.com/oldhorse/archive/2009/11/16/1604009.html
B树
即二叉搜索树:
1.所有非叶子结点至多拥有两个儿子(Left和Right);
&nb
- 数据库连接池
alafqq
数据库连接池
http://www.cnblogs.com/xdp-gacl/p/4002804.html
@Anthor:孤傲苍狼
数据库连接池
用MySQLv5版本的数据库驱动没有问题,使用MySQLv6和Oracle的数据库驱动时候报如下错误:
java.lang.ClassCastException: $Proxy0 cannot be cast to java.sql.Connec
- java泛型
百合不是茶
java泛型
泛型
在Java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的“任意化”,任意化的缺点就是要实行强制转换,这种强制转换可能会带来不安全的隐患
泛型的特点:消除强制转换 确保类型安全 向后兼容
简单泛型的定义:
泛型:就是在类中将其模糊化,在创建对象的时候再具体定义
class fan
- javascript闭包[两个小测试例子]
bijian1013
JavaScriptJavaScript
一.程序一
<script>
var name = "The Window";
var Object_a = {
name : "My Object",
getNameFunc : function(){
var that = this;
return function(){
- 探索JUnit4扩展:假设机制(Assumption)
bijian1013
javaAssumptionJUnit单元测试
一.假设机制(Assumption)概述 理想情况下,写测试用例的开发人员可以明确的知道所有导致他们所写的测试用例不通过的地方,但是有的时候,这些导致测试用例不通过的地方并不是很容易的被发现,可能隐藏得很深,从而导致开发人员在写测试用例时很难预测到这些因素,而且往往这些因素并不是开发人员当初设计测试用例时真正目的,
- 【Gson四】范型POJO的反序列化
bit1129
POJO
在下面这个例子中,POJO(Data类)是一个范型类,在Tests中,指定范型类为PieceData,POJO初始化完成后,通过
String str = new Gson().toJson(data);
得到范型化的POJO序列化得到的JSON串,然后将这个JSON串反序列化为POJO
import com.google.gson.Gson;
import java.
- 【Spark八十五】Spark Streaming分析结果落地到MySQL
bit1129
Stream
几点总结:
1. DStream.foreachRDD是一个Output Operation,类似于RDD的action,会触发Job的提交。DStream.foreachRDD是数据落地很常用的方法
2. 获取MySQL Connection的操作应该放在foreachRDD的参数(是一个RDD[T]=>Unit的函数类型),这样,当foreachRDD方法在每个Worker上执行时,
- NGINX + LUA实现复杂的控制
ronin47
nginx lua
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-递归判断数组是否升序
bylijinnan
java
public class IsAccendListRecursive {
/*递归判断数组是否升序
* if a Integer array is ascending,return true
* use recursion
*/
public static void main(String[] args){
IsAccendListRecursiv
- Netty源码学习-DefaultChannelPipeline2
bylijinnan
javanetty
Netty3的API
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/ChannelPipeline.html
里面提到ChannelPipeline的一个“pitfall”:
如果ChannelPipeline只有一个handler(假设为handlerA)且希望用另一handler(假设为handlerB)
来
- Java工具之JPS
chinrui
java
JPS使用
熟悉Linux的朋友们都知道,Linux下有一个常用的命令叫做ps(Process Status),是用来查看Linux环境下进程信息的。同样的,在Java Virtual Machine里面也提供了类似的工具供广大Java开发人员使用,它就是jps(Java Process Status),它可以用来
- window.print分页打印
ctrain
window
function init() {
var tt = document.getElementById("tt");
var childNodes = tt.childNodes[0].childNodes;
var level = 0;
for (var i = 0; i < childNodes.length; i++) {
- 安装hadoop时 执行jps命令Error occurred during initialization of VM
daizj
jdkhadoopjps
在安装hadoop时,执行JPS出现下面错误
[slave16]
[email protected]:/tmp/hsperfdata_hdfs# jps
Error occurred during initialization of VM
java.lang.Error: Properties init: Could not determine current working
- PHP开发大型项目的一点经验
dcj3sjt126com
PHP重构
一、变量 最好是把所有的变量存储在一个数组中,这样在程序的开发中可以带来很多的方便,特别是当程序很大的时候。变量的命名就当适合自己的习惯,不管是用拼音还是英语,至少应当有一定的意义,以便适合记忆。变量的命名尽量规范化,不要与PHP中的关键字相冲突。 二、函数 PHP自带了很多函数,这给我们程序的编写带来了很多的方便。当然,在大型程序中我们往往自己要定义许多个函数,几十
- android笔记之--向网络发送GET/POST请求参数
dcj3sjt126com
android
使用GET方法发送请求
private static boolean sendGETRequest (String path,
Map<String, String> params) throws Exception{
//发送地http://192.168.100.91:8080/videoServi
- linux复习笔记 之bash shell (3) 通配符
eksliang
linux 通配符linux通配符
转载请出自出处:
http://eksliang.iteye.com/blog/2104387
在bash的操作环境中有一个非常有用的功能,那就是通配符。
下面列出一些常用的通配符,如下表所示 符号 意义 * 万用字符,代表0个到无穷个任意字符 ? 万用字符,代表一定有一个任意字符 [] 代表一定有一个在中括号内的字符。例如:[abcd]代表一定有一个字符,可能是a、b、c
- Android关于短信加密
gqdy365
android
关于Android短信加密功能,我初步了解的如下(只在Android应用层试验):
1、因为Android有短信收发接口,可以调用接口完成短信收发;
发送过程:APP(基于短信应用修改)接受用户输入号码、内容——>APP对短信内容加密——>调用短信发送方法Sm
- asp.net在网站根目录下创建文件夹
hvt
.netC#hovertreeasp.netWeb Forms
假设要在asp.net网站的根目录下建立文件夹hovertree,C#代码如下:
string m_keleyiFolderName = Server.MapPath("/hovertree");
if (Directory.Exists(m_keleyiFolderName))
{
//文件夹已经存在
return;
}
else
{
try
{
D
- 一个合格的程序员应该读过哪些书
justjavac
程序员书籍
编者按:2008年8月4日,StackOverflow 网友 Bert F 发帖提问:哪本最具影响力的书,是每个程序员都应该读的?
“如果能时光倒流,回到过去,作为一个开发人员,你可以告诉自己在职业生涯初期应该读一本, 你会选择哪本书呢?我希望这个书单列表内容丰富,可以涵盖很多东西。”
很多程序员响应,他们在推荐时也写下自己的评语。 以前就有国内网友介绍这个程序员书单,不过都是推荐数
- 单实例实践
跑龙套_az
单例
1、内部类
public class Singleton {
private static class SingletonHolder {
public static Singleton singleton = new Singleton();
}
public Singleton getRes
- PO VO BEAN 理解
q137681467
VODTOpo
PO:
全称是 persistant object持久对象 最形象的理解就是一个PO就是数据库中的一条记录。 好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。
BO:
全称是 business object:业务对象 主要作用是把业务逻辑封装为一个对象。这个对
- 战胜惰性,暗自努力
金笛子
努力
偶然看到一句很贴近生活的话:“别人都在你看不到的地方暗自努力,在你看得到的地方,他们也和你一样显得吊儿郎当,和你一样会抱怨,而只有你自己相信这些都是真的,最后也只有你一人继续不思进取。”很多句子总在不经意中就会戳中一部分人的软肋,我想我们每个人的周围总是有那么些表现得“吊儿郎当”的存在,是否你就真的相信他们如此不思进取,而开始放松了对自己的要求随波逐流呢?
我有个朋友是搞技术的,平时嘻嘻哈哈,以
- NDK/JNI二维数组多维数组传递
wenzongliang
二维数组jniNDK
多维数组和对象数组一样处理,例如二维数组里的每个元素还是一个数组 用jArray表示,直到数组变为一维的,且里面元素为基本类型,去获得一维数组指针。给大家提供个例子。已经测试通过。
Java_cn_wzl_FiveChessView_checkWin( JNIEnv* env,jobject thiz,jobjectArray qizidata)
{
jint i,j;
int s