鲁棒是Robust,英 [rə(ʊ)'bʌst]的音译,也就是健壮、强壮、坚定、粗野的意思。鲁棒性(robustness)就是系统的健壮性。常使用如:算法的鲁棒性。
算法杂货铺转载学习
http://www.cnblogs.com/leoo2sk/archive/2010/09/20/k-means.html
算法杂货铺——k均值聚类(K-means)
http://www.cnblogs.com/leoo2sk/archive/2010/09/19/decision-tree.html
算法杂货铺——分类算法之决策树(Decision tree)
http://www.dataguru.cn/article-3408-1.html
聚类算法实践(一)——层次聚类、K-means聚类
聚类之——“软硬”之别
分类标准可以进行不同的分类。就好像人按照性别可以分成男人和女人,按照年龄可以分为老中青一样。
聚类分析如果按照隶属度的取值范围可以分为两类,一类叫硬聚类算法,另一类就是模糊聚类算法。隶属度的概念是从模糊集理论里引申出来的。
传统硬聚类算法隶属度只有两个值 0 和 1。也就是说一个样本只能完全属于某一个类或者完全不属于某一个类。举个例子,把温度分为两类,大于10度为热,小于或者等于10度为冷,这就是典型的“硬隶属度”概念。那么不论是5度还是负100度都属于冷这个类,而不属于热这个类的。
模糊集里的隶属度是一个取值在[0 1]区间内的数。一个样本同时属于所有的类,但是通过隶属度的大小来区分其差异。比如5度,可能属于冷这类的隶属度值为0.7,而属于热这个类的值为0.3。这样做就比较合理,硬聚类也可以看做模糊聚类的一个特例。
一些仅为个人倾向的分析(不严谨或不尽规范):所谓的动态模糊分析法我在文献里很少见到好像并不主流,似乎没有专门的这样一种典型聚类算法,可能是个别人根据自己需要设计并命名的一种针对模糊聚类的改进方法。有把每个不同样本加权的,权值自己确定,这样就冠以“动态"二字,这都是作者自己起的。也有别的也叫”动态“的,可能也不一样,似乎都是个别人自己提出的。
概念:聚类与分类(Classification)有别
————————————————————————————————
K-Means聚类算法
原文地址:http://blog.sina.com.cn/s/blog_62186b46010145ne.html
四种聚类方法之比较:http://www.cnblogs.com/William_Fire/archive/2013/02/09/2909499.html
深入浅出K-Means算法:http://www.csdn.net/article/2012-07-03/2807073-k-means
K-Means算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇。然后按平均法重新计算各个簇的质心,从而确定新的簇心。一直迭代,直到簇心的移动距离小于某个给定的值。
K-Means聚类算法主要分为三个步骤:
(1)第一步是为待聚类的点寻找聚类中心
(2)第二步是计算每个点到聚类中心的距离,将每个点聚类到离该点最近的聚类中去
(3)第三步是计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心
(4)反复执行(2)、(3),直到聚类中心不再进行大范围移动或者聚类次数达到要求为止
下图展示了对n个样本点进行K-means聚类的效果,这里k取2:
(a)未聚类的初始点集
(b)随机选取两个点作为聚类中心
(c)计算每个点到聚类中心的距离,并聚类到离该点最近的聚类中去
(d)计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心
(e)重复(c),计算每个点到聚类中心的距离,并聚类到离该点最近的聚类中去
(f)重复(d),计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心
Matlab实现:
详见:http://www.oschina.net/code/snippet_176897_10239