基于opencv实现SVM分类器【附源码】

文章目录

  • 前言
  • 一、项目结构
    • 在这里插入图片描述
  • 二、源码
    • 1.程序入口
    • 2.SVM_Classify类的设计
    • 3.Classfication_SVM类的设计
  • 总结


前言

本文主要使用opencv实现图像分类器


一、项目结构

基于opencv实现SVM分类器【附源码】_第1张图片

二、源码

1.程序入口

int main(void)
{
	//int clusters=1000;
	//Classfication_SVM c(clusters);
	特征聚类
	//c.Train_SVM();
	c.Test_SVM();
	将测试图片分类
	//c.category_By_svm();

	SVM_Classify c(1000);
	//特征聚类
	//c.Train_SVM("C:\\Users\\Katrinali\\Desktop\\project data\\data\\result_image\\","C:\\Users\\Katrinali\\Desktop\\project data\\");
	c.Test_SVM("C:/Users/Katrinali/Desktop/beisu","C:\\Users\\Katrinali\\Desktop\\project data\\data\\train_images\\train.txt");
	//将测试图片分类
	cv::Mat img = cv::imread("C:/Users/Katrinali/Desktop/project data/data/test_image/2.jpg");
	c.Predict_Img("C:/Users/Katrinali/Desktop/beisu",img);
	return 0;
}

2.SVM_Classify类的设计

SVM_Classify.h文件

#pragma once
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
//boost 库
#include


class SVM_Classify
{
public:
	SVM_Classify(int);
	~SVM_Classify(void);

private:
	cv::Ptr<cv::FeatureDetector> featureDecter;
	cv::Ptr<cv::DescriptorExtractor> descriptorExtractor;
	cv::Ptr<cv::BOWKMeansTrainer> bowtrainer;
	cv::Ptr<cv::BOWImgDescriptorExtractor> bowDescriptorExtractor;
	cv::Ptr<cv::FlannBasedMatcher> descriptorMacher;
	cv::Mat vocab;
	CvSVM *stor_svms;

private:
	int categories_size;
	std::vector<std::string> category_name;
	std::multimap<std::string, cv::Mat> train_set;
	std::map<std::string,cv::Mat> allsamples_bow;
private:
	void make_train_set(std::string train_path);
	void create_vacab(std::string train_path);
	void create_bow_image();
	void trainSvm(std::string modelPath);

	void make_test_set(std::string file_path);
	void load_bow_image(std::string model_path);

public:
	void Train_SVM(std::string  TrainPath, std::string  ModelPath);
	void Test_SVM(std::string ModelPath,std::string txtFile);
	std::string Predict_Img(std::string model_path,cv::Mat input_pic);
};


SVM_Classify.cpp文件

#include "SVM_Classify.h"


SVM_Classify::SVM_Classify(int clusters)
{
	//初始化指针
	featureDecter=new cv::SurfFeatureDetector();
	descriptorExtractor=new cv::SurfDescriptorExtractor();

	bowtrainer=new cv::BOWKMeansTrainer(clusters);
	descriptorMacher=new cv::FlannBasedMatcher();
	bowDescriptorExtractor=new cv::BOWImgDescriptorExtractor(descriptorExtractor,descriptorMacher);
}


SVM_Classify::~SVM_Classify(void)
{
}

void SVM_Classify::Train_SVM(std::string TrainPath, std::string  ModelPath)
{
	//读取训练集,得到种类
	make_train_set(TrainPath);
	std::string modelPath = ModelPath + std::string("vocab.xml");
	create_vacab(modelPath);
	create_bow_image();
	trainSvm(ModelPath);
}

void SVM_Classify::make_train_set(std::string train_path)
{
	std::string categor;
	//递归迭代rescursive 直接定义两个迭代器:i为迭代起点(有参数),end_iter迭代终点
	for(boost::filesystem::recursive_directory_iterator i(train_path),end_iter;i!=end_iter;i++)
	{
		// level == 0即为目录,因为TRAIN__FOLDER中设置如此
		if(i.level()==0)
		{
			// 将类目名称设置为目录的名称
			categor=(i->path()).filename().string();
			category_name.push_back(categor);
		}else
		{
			// 读取文件夹下的文件。level 1表示这是一副训练图,通过multimap容器来建立由类目名称到训练图的一对多的映射
			std::string filename=std::string(train_path)+ std::string("/") +categor + std::string("/")+(i->path()).filename().string();
			cv::Mat temp=cv::imread(filename,CV_LOAD_IMAGE_GRAYSCALE);
			std::pair<std::string,cv::Mat> p(categor,temp);

			//得到训练集
			train_set.insert(p);
		}	
	}
	categories_size=category_name.size();
}

void SVM_Classify::create_vacab(std::string Model_Path)
{
	//创建本地文件
	cv::Mat vocab_descriptors;

	// 对于每一幅模板,提取SURF算子,存入到vocab_descriptors中
	std::multimap<std::string,cv::Mat> ::iterator i=train_set.begin();
	for(;i!=train_set.end();i++)
	{
		std::vector<cv::KeyPoint> kp;
		cv::Mat templ=(*i).second;
		cv::Mat descrip;
		featureDecter->detect(templ,kp);

		descriptorExtractor->compute(templ,kp,descrip);
		//push_back(Mat);在原来的Mat的最后一行后再加几行,元素为Mat时, 其类型和列的数目 必须和矩阵容器是相同的
		vocab_descriptors.push_back(descrip);
	}
	//将每一副图的Surf特征利用add函数加入到bowTraining中去,就可以进行聚类训练了
	bowtrainer->add(vocab_descriptors);
	// 对SURF描述子进行聚类
	vocab=bowtrainer->cluster();
	
	//以文件格式保存词典
	cv::FileStorage file_stor(Model_Path,cv::FileStorage::WRITE);
	file_stor<<"vocabulary"<<vocab;
	file_stor.release();
}

void SVM_Classify::create_bow_image()
{
	bowDescriptorExtractor->setVocabulary(vocab);
	// 对于每一幅模板,提取SURF算子,存入到vocab_descriptors中
	std::multimap<std::string,cv::Mat> ::iterator i=train_set.begin();

	for(;i!=train_set.end();i++)
	{
		std::vector<cv::KeyPoint> kp;
		std::string cate_nam=(*i).first;
		cv::Mat tem_image=(*i).second;
		cv::Mat imageDescriptor;
		featureDecter->detect(tem_image,kp);

		bowDescriptorExtractor->compute(tem_image,kp,imageDescriptor);
		//push_back(Mat);在原来的Mat的最后一行后再加几行,元素为Mat时, 其类型和列的数目 必须和矩阵容器是相同的
		allsamples_bow[cate_nam].push_back(imageDescriptor);
	}
}
	
void SVM_Classify::trainSvm(std::string modelPath)
{
	stor_svms=new CvSVM[categories_size];
	//设置训练参数
	cv::SVMParams svmParams;
	svmParams.svm_type    = CvSVM::C_SVC;
	svmParams.kernel_type = CvSVM::LINEAR;
	svmParams.term_crit   = cvTermCriteria(CV_TERMCRIT_ITER, 100, 1e-6);

	for(int i=0;i<categories_size;i++)
	{
		cv::Mat tem_Samples( 0, allsamples_bow.at( category_name[i] ).cols, allsamples_bow.at( category_name[i] ).type() );
		cv::Mat responses( 0, 1, CV_32SC1 );
		tem_Samples.push_back( allsamples_bow.at( category_name[i] ) );
		cv::Mat posResponses( allsamples_bow.at( category_name[i]).rows, 1, CV_32SC1, cv::Scalar::all(1) ); 
		responses.push_back( posResponses );

		for ( auto itr = allsamples_bow.begin(); itr != allsamples_bow.end(); ++itr ) 
		{
			if ( itr -> first == category_name[i] ) {
				continue;
			}
			tem_Samples.push_back( itr -> second );
			cv::Mat response( itr -> second.rows, 1, CV_32SC1, cv::Scalar::all( -1 ) );
			responses.push_back( response );

		}

		stor_svms[i].train( tem_Samples, responses, cv::Mat(), cv::Mat(), svmParams );
		//存储svm
		std::string svm_filename=modelPath + category_name[i] + std::string("SVM.xml");
		stor_svms[i].save(svm_filename.c_str());
	}
}

void SVM_Classify::Test_SVM(std::string ModelPath,std::string txtFile)
{
	make_test_set(txtFile);
	load_bow_image(ModelPath);
}

void SVM_Classify::make_test_set(std::string file_path)
{
	std::string categor;
	//递归迭代rescursive 直接定义两个迭代器:i为迭代起点(有参数),end_iter迭代终点
    int i=0; 
    std::ifstream infile;
    infile.open(file_path,std::ios::in);
    while(!infile.eof())            // 若未到文件结束一直循环 
    {  
		std::string tempstr;
		std::getline(infile, tempstr, '\n');
		category_name.push_back(tempstr);
    }
	categories_size=category_name.size();
}

void SVM_Classify::load_bow_image(std::string model_path)
{
	cv::FileStorage va_fs(model_path + "/vocab.xml",cv::FileStorage::READ);

	//如果词典存在则直接读取
	if(va_fs.isOpened())
	{
		cv::Mat temp_vacab;
		va_fs["vocabulary"] >> temp_vacab;
		bowDescriptorExtractor->setVocabulary(temp_vacab);
		va_fs.release();
	}
}

std::string SVM_Classify::Predict_Img(std::string model_path,cv::Mat input_pic)
{
	cv::Mat gray_pic;
	cv::Mat threshold_image;
	std::string prediction_category;
	float curConfidence;

	
	imshow("输入图片:",input_pic);
	cv::cvtColor(input_pic,gray_pic,CV_BGR2GRAY);
	
	// 提取BOW描述子
	std::vector<cv::KeyPoint> kp;
	cv::Mat test;
	featureDecter->detect(gray_pic,kp);
	bowDescriptorExtractor->compute(gray_pic,kp,test);

	int sign=0;
	float best_score = -2.0f;

	for(int i=0;i<categories_size;i++)
	{	
			
		std::string cate_na=category_name[i];

		std::string f_path=std::string(model_path) + "/" +cate_na + std::string("SVM.xml");
		cv::FileStorage svm_fs(f_path,cv::FileStorage::READ);
		//读取SVM.xml
		if(svm_fs.isOpened())
		{

			svm_fs.release();	
			CvSVM st_svm;
			st_svm.load(f_path.c_str());

			if(sign==0)
			{
				float score_Value = st_svm.predict( test, true );
				float class_Value = st_svm.predict( test, false );
				sign = ( score_Value < 0.0f ) == ( class_Value < 0.0f )? 1 : -1;
			}
			curConfidence = sign * st_svm.predict( test, true );
		}
		else
		{				

			if(sign==0)
			{
				float scoreValue = stor_svms[i].predict( test, true );
				float classValue = stor_svms[i].predict( test, false );
				sign = ( scoreValue < 0.0f ) == ( classValue < 0.0f )? 1 : -1;
			}
			curConfidence = sign * stor_svms[i].predict( test, true );
		}

		if(curConfidence>best_score)
		{
			best_score=curConfidence;
			prediction_category=cate_na;
		}
	}
	return prediction_category;

}


3.Classfication_SVM类的设计

Classfication_SVM.h

#pragma once
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
//boost 库
#include

using namespace cv;
using namespace std;
//定义一个boost库的命名空间
namespace fs=boost::filesystem;
using namespace fs;

#define DATA_FOLDER "C:\\Users\\Katrinali\\Desktop\\project data\\data\\"
#define TEST_FOLDER "C:\\Users\\Katrinali\\Desktop\\project data\\data\\test_image"
#define RESULT_FOLDER "C:\\Users\\Katrinali\\Desktop\\project data\\data\\result_image\\"

class Classfication_SVM
{
public:
	Classfication_SVM(int);//构造函数
	~Classfication_SVM(void);

private:
	//存放所有训练图片的BOW
	map<string,Mat> allsamples_bow;
	//从类目名称到训练图集的映射,关键字可以重复出现
	multimap<string,Mat> train_set;
	// 训练得到的SVM
	CvSVM *stor_svms;
	//类目名称,也就是TRAIN_FOLDER设置的目录名
	vector<string> category_name;
	//类目数目
	int categories_size;
	//用SURF特征构造视觉词库的聚类数目
	int clusters;
	//存放训练图片词典
	Mat vocab;

	//特征检测器detectors与描述子提取器extractors   泛型句柄类Ptr
	Ptr<FeatureDetector> featureDecter;
	Ptr<DescriptorExtractor> descriptorExtractor;

	Ptr<BOWKMeansTrainer> bowtrainer;
	Ptr<BOWImgDescriptorExtractor> bowDescriptorExtractor;
	Ptr<FlannBasedMatcher> descriptorMacher;

	//构造训练集合
	void make_train_set(string train_path);
	void make_test_set(string train_path);
	// 移除扩展名,用来讲模板组织成类目
	string remove_extention(string);

public:
	//训练分类器
	void trainSvm();
	//将测试图片分类
	void category_By_svm();

	void Train_SVM();
	void create_vacab();
	void create_bow_image();
	void Test_SVM();
	void load_bow_image();
	void load_vacab();
};

Classfication_SVM.cpp

#include "Classfication_SVM.h"

Classfication_SVM::Classfication_SVM(int _clusters)
{
	cout<<"开始初始化..."<<endl;
	clusters=_clusters;
	//初始化指针
	featureDecter=new SurfFeatureDetector();
	descriptorExtractor=new SurfDescriptorExtractor();

	bowtrainer=new BOWKMeansTrainer(clusters);
	descriptorMacher=new FlannBasedMatcher();
	bowDescriptorExtractor=new BOWImgDescriptorExtractor(descriptorExtractor,descriptorMacher);
	cout<<"初始化完毕..."<<endl;
}
	


Classfication_SVM::~Classfication_SVM(void)
{
}

void Classfication_SVM::Train_SVM()
{
	//读取训练集,得到种类
	make_train_set("C:\\Users\\Katrinali\\Desktop\\project data\\data\\train_images\\");
	create_vacab();
	create_bow_image();
	trainSvm();
}

void Classfication_SVM::Test_SVM()
{
	make_test_set("C:\\Users\\Katrinali\\Desktop\\project data\\data\\train_images\\");
	load_vacab();
	load_bow_image();
}

//构造训练集合
void Classfication_SVM::make_train_set(string train_path)
{
	cout<<"读取训练集..."<<endl;
	string categor;
	//递归迭代rescursive 直接定义两个迭代器:i为迭代起点(有参数),end_iter迭代终点
	for(recursive_directory_iterator i(train_path),end_iter;i!=end_iter;i++)
	{
		// level == 0即为目录,因为TRAIN__FOLDER中设置如此
		if(i.level()==0)
		{
			// 将类目名称设置为目录的名称
			categor=(i->path()).filename().string();
			category_name.push_back(categor);
		}else
		{
			// 读取文件夹下的文件。level 1表示这是一副训练图,通过multimap容器来建立由类目名称到训练图的一对多的映射
			string filename=string(train_path)+categor+string("/")+(i->path()).filename().string();
			Mat temp=imread(filename,CV_LOAD_IMAGE_GRAYSCALE);
			pair<string,Mat> p(categor,temp);

			//得到训练集
			train_set.insert(p);
		}	
	}

	categories_size=category_name.size();
	cout<<"发现 "<<categories_size<<"种类别物体..."<<endl;
}
void Classfication_SVM::create_vacab()
{
	//创建本地文件
	Mat vocab_descriptors;

	// 对于每一幅模板,提取SURF算子,存入到vocab_descriptors中
	multimap<string,Mat> ::iterator i=train_set.begin();
	for(;i!=train_set.end();i++)
	{
		vector<KeyPoint>kp;
		Mat templ=(*i).second;
		Mat descrip;
		featureDecter->detect(templ,kp);

		descriptorExtractor->compute(templ,kp,descrip);
		//push_back(Mat);在原来的Mat的最后一行后再加几行,元素为Mat时, 其类型和列的数目 必须和矩阵容器是相同的
		vocab_descriptors.push_back(descrip);
	}
	cout << "训练图片开始聚类..." << endl;
	//将每一副图的Surf特征利用add函数加入到bowTraining中去,就可以进行聚类训练了
	bowtrainer->add(vocab_descriptors);
	// 对SURF描述子进行聚类
	vocab=bowtrainer->cluster();
	cout<<"聚类完毕,得出词典..."<<endl;

	//以文件格式保存词典
	FileStorage file_stor(DATA_FOLDER "vocab.xml",FileStorage::WRITE);
	file_stor<<"vocabulary"<<vocab;
	file_stor.release();
}
void Classfication_SVM::create_bow_image()
{
	bowDescriptorExtractor->setVocabulary(vocab);
	// 对于每一幅模板,提取SURF算子,存入到vocab_descriptors中
	multimap<string,Mat> ::iterator i=train_set.begin();

	for(;i!=train_set.end();i++)
	{
		vector<KeyPoint>kp;
		string cate_nam=(*i).first;
		Mat tem_image=(*i).second;
		Mat imageDescriptor;
		featureDecter->detect(tem_image,kp);

		bowDescriptorExtractor->compute(tem_image,kp,imageDescriptor);
		//push_back(Mat);在原来的Mat的最后一行后再加几行,元素为Mat时, 其类型和列的数目 必须和矩阵容器是相同的
		allsamples_bow[cate_nam].push_back(imageDescriptor);
	}
}
//训练分类器
void Classfication_SVM::trainSvm()
{
	stor_svms=new CvSVM[categories_size];
	//设置训练参数
	SVMParams svmParams;
	svmParams.svm_type    = CvSVM::C_SVC;
	svmParams.kernel_type = CvSVM::LINEAR;
	svmParams.term_crit   = cvTermCriteria(CV_TERMCRIT_ITER, 100, 1e-6);

	cout<<"训练分类器..."<<endl;
	for(int i=0;i<categories_size;i++)
	{
		Mat tem_Samples( 0, allsamples_bow.at( category_name[i] ).cols, allsamples_bow.at( category_name[i] ).type() );
		Mat responses( 0, 1, CV_32SC1 );
		tem_Samples.push_back( allsamples_bow.at( category_name[i] ) );
		Mat posResponses( allsamples_bow.at( category_name[i]).rows, 1, CV_32SC1, Scalar::all(1) ); 
		responses.push_back( posResponses );

		for ( auto itr = allsamples_bow.begin(); itr != allsamples_bow.end(); ++itr ) 
		{
			if ( itr -> first == category_name[i] ) {
				continue;
			}
			tem_Samples.push_back( itr -> second );
			Mat response( itr -> second.rows, 1, CV_32SC1, Scalar::all( -1 ) );
			responses.push_back( response );

		}

		stor_svms[i].train( tem_Samples, responses, Mat(), Mat(), svmParams );
		//存储svm
		string svm_filename=string(DATA_FOLDER) + category_name[i] + string("SVM.xml");
		stor_svms[i].save(svm_filename.c_str());
	}
	cout<<"分类器训练完毕..."<<endl;
}

void Classfication_SVM::make_test_set(string train_path)
{
	string categor;
	//递归迭代rescursive 直接定义两个迭代器:i为迭代起点(有参数),end_iter迭代终点
	for(recursive_directory_iterator i(train_path),end_iter;i!=end_iter;i++)
	{
		// level == 0即为目录,因为TRAIN__FOLDER中设置如此
		if(i.level()==0)
		{
			// 将类目名称设置为目录的名称
			categor=(i->path()).filename().string();
			category_name.push_back(categor);
		}
	}

	categories_size=category_name.size();
	cout<<"发现 "<<categories_size<<"种类别物体..."<<endl;
}

void Classfication_SVM::load_vacab()
{
	FileStorage vacab_fs(DATA_FOLDER "vocab.xml",FileStorage::READ);

	//如果之前已经生成好,就不需要重新聚类生成词典
	if(vacab_fs.isOpened())
	{
		cout<<"图片已经聚类,词典已经存在.."<<endl;
		vacab_fs.release();
	}
}
//构造bag of words
void Classfication_SVM::load_bow_image()
{
	cout<<"构造bag of words..."<<endl;
	FileStorage va_fs(DATA_FOLDER "vocab.xml",FileStorage::READ);

	//如果词典存在则直接读取
	if(va_fs.isOpened())
	{
		Mat temp_vacab;
		va_fs["vocabulary"] >> temp_vacab;
		bowDescriptorExtractor->setVocabulary(temp_vacab);
		va_fs.release();
	}
}

//对测试图片进行分类
void Classfication_SVM::category_By_svm()
{
	cout<<"物体分类开始..."<<endl;
	Mat gray_pic;
	Mat threshold_image;
	string prediction_category;
	float curConfidence;

	directory_iterator begin_train(TEST_FOLDER);
	directory_iterator end_train;

	for(;begin_train!=end_train;++begin_train)
	{
		
		//获取该目录下的图片名
		string train_pic_name=(begin_train->path()).filename().string();
		string train_pic_path=string(TEST_FOLDER)+string("/")+(begin_train->path()).filename().string();
		
		//读取图片
		cout<<train_pic_path<<endl;
		Mat input_pic=imread(train_pic_path);
		imshow("输入图片:",input_pic);
		cvtColor(input_pic,gray_pic,CV_BGR2GRAY);
	
		// 提取BOW描述子
		vector<KeyPoint>kp;
		Mat test;
		featureDecter->detect(gray_pic,kp);
		bowDescriptorExtractor->compute(gray_pic,kp,test);

		int sign=0;
		float best_score = -2.0f;

		for(int i=0;i<categories_size;i++)
		{	
			
			string cate_na=category_name[i];

			string f_path=string(DATA_FOLDER)+cate_na + string("SVM.xml");
			FileStorage svm_fs(f_path,FileStorage::READ);
			//读取SVM.xml
			if(svm_fs.isOpened())
			{

				svm_fs.release();	
				CvSVM st_svm;
				st_svm.load(f_path.c_str());

				if(sign==0)
				{
					float score_Value = st_svm.predict( test, true );
					float class_Value = st_svm.predict( test, false );
					sign = ( score_Value < 0.0f ) == ( class_Value < 0.0f )? 1 : -1;
				}
				curConfidence = sign * st_svm.predict( test, true );
			}
			else
			{				
				if(sign==0)
				{
					float scoreValue = stor_svms[i].predict( test, true );
					float classValue = stor_svms[i].predict( test, false );
					sign = ( scoreValue < 0.0f ) == ( classValue < 0.0f )? 1 : -1;
				}
				curConfidence = sign * stor_svms[i].predict( test, true );
			}

			if(curConfidence>best_score)
			{
				best_score=curConfidence;
				prediction_category=cate_na;
			}

		}

		//将图片写入相应的文件夹下
		directory_iterator begin_iterater(RESULT_FOLDER);
		directory_iterator end_iterator;
		//获取该目录下的文件名
		for(;begin_iterater!=end_iterator;++begin_iterater)
		{

			if(begin_iterater->path().filename().string()==prediction_category)
			{
				
				string filename=string(RESULT_FOLDER)+prediction_category+string("/")+train_pic_name;
				imwrite(filename,input_pic);
			}

		}
		//显示输出
		//namedWindow("Dectect Object");
		cout<<"这张图属于: "<<prediction_category<<endl;
		//imshow("Dectect Object",result_objects[prediction_category]);
		waitKey(0);
	}
}


总结

源码已在博客中,不过也可以直接下载整个工程
源码

你可能感兴趣的:(机器视觉-opencv,opencv,支持向量机,计算机视觉,图像分类器)