CSV全称”Comma Separated Values“,是一种格式化的文件,由行和列组成,分隔符可以根据需要来变化。
我们使用python自带的csv模块来进行以下操作
我们新建一个csv文件,文件名为student.csv, 内容如下
Name,Age,Sex
Mary,18,Female
Tony,19,Male
Jack,20,Male
import csv
with open("students.csv", "r", encoding="utf-8") as f:
reader = csv.reader(f)
for row in reader:
print(row)
结果如下:
['Name', 'Age', 'Sex']
['Mary', '18', 'Female']
['Tony', '19', 'Male']
['Jack', '20', 'Male']
import csv
with open("students.csv", "r", encoding="utf-8") as f:
reader = csv.DictReader(f)
for row in reader:
print(row)
结果如下:
OrderedDict([('Name', 'Mary'), ('Age', '18'), ('Sex', 'Female')])
OrderedDict([('Name', 'Tony'), ('Age', '19'), ('Sex', 'Male')])
OrderedDict([('Name', 'Jack'), ('Age', '20'), ('Sex', 'Male')])
输出的结果为OrderedDict,可以将其转为dict类型
import csv
with open("students.csv", "r", encoding="utf-8") as f:
reader = csv.DictReader(f)
for row in reader:
print(dict(row))
结果如下:
{'Name': 'Mary', 'Age': '18', 'Sex': 'Female'}
{'Name': 'Tony', 'Age': '19', 'Sex': 'Male'}
{'Name': 'Jack', 'Age': '20', 'Sex': 'Male'}
也可以像reader函数一样获取列表
import csv
with open("students.csv", "r", encoding="utf-8") as f:
reader = csv.DictReader(f)
for row in reader.reader:
print(row)
结果如下
['Name', 'Age', 'Sex']
['Mary', '18', 'Female']
['Tony', '19', 'Male']
['Jack', '20', 'Male']
import csv
data = [
('Name', 'Age', 'Sex'),
('Jane', '16', 'Female'),
('Tom', '14', 'Male'),
('Leon', '15', 'Male'),
]
with open('student2.csv', 'w', newline='') as f:
writer = csv.writer(f)
writer.writerows(data)
写入的文件student2.csv内容如下
Name,Age,Sex
Jane,16,Female
Tom,14,Male
Leon,15,Male
import csv
data = [
{'Name': 'Mark', 'Age': 17, 'Sex': 'Male'},
{'Name': 'Lisa', 'Age': 16, 'Sex': 'Female'},
{'Name': 'Jacky', 'Age': 20, 'Sex': 'Male'},
]
with open('student3.csv', 'w', newline='') as f:
fieldnames = ['Name', 'Age', 'Sex']
writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writeheader()
writer.writerows(data)
写入的文件student3.csv内容如下
Name,Age,Sex
Mark,17,Male
Lisa,16,Female
Jacky,20,Male