Pytorch中CrossEntropyLoss()详解

一、损失函数 nn.CrossEntropyLoss()

交叉熵损失函数 nn.CrossEntropyLoss() ,结合了 nn.LogSoftmax() 和 nn.NLLLoss() 两个函数。 它在做分类(具体几类)训练的时候是非常有用的。

二. 什么是交叉熵

交叉熵主要是用来判定实际的输出与期望的输出的接近程度。举个例子:在做分类训练的时候,如果一个样本属于第 K 类,那么这个类别所对应的输出节点的输出值应该为1,而其他节点的输出都为0,即 [0,0,1,0,….0,0] ,这个数组也就是样本的 Label,是神经网络最期望的输出结果。我们用交叉熵损失函数来衡量网络的实际输出与正确标签的差异,利用这种差异经过反向传播去更新网络参数。

交叉熵:它主要刻画的是实际输出(概率)与期望输出(概率)的距离,也就是交叉熵的值越小,两个概率分布就越接近。假设概率分布p为期望输出,概率分布q为实际输出,则交叉熵定义为:

CE

那么该公式如何表示,举个例子,假设N=3,期望输出为p = (1,0,0),实际输出q1 = (0.5,0.2,0.3),q2 = (0.8,0.1,0.1),那么:
CE
通过上面可以看出,q2与p更为接近,它的交叉熵也更小。

三. Pytorch中的CrossEntropyLoss()函数

Pytorch中计算的交叉熵并不是采用
CE
这种方式计算得到的,而是交叉熵的另外一种方式计算得到的,如下公式所示,它是交叉熵的另外一种方式。
CE
Pytorch中CrossEntropyLoss()函数的主要是将softmax-log-NLLLoss合并到一块得到的结果。

  1. Softmax后的数值都在0~1之间,所以ln之后值域是负无穷到0。
  2. 然后将Softmax之后的结果取log,将乘法改成加法减少计算量,同时保障函数的单调性 。
  3. NLLLoss的结果就是把上面的输出与Label对应的那个值拿出来(下面例子中就是:将log_output\logsoftmax_output中与y_target对应的值拿出来),去掉负号,再求均值。

举例 :

import torch
import torch.nn as nn
x_input=torch.randn(3,3)#随机生成输入 
print('x_input:\n',x_input) 
y_target=torch.tensor([1,2,0])#设置输出具体值 print('y_target\n',y_target)

#计算输入softmax,此时可以看到每一行加到一起结果都是1
softmax_func=nn.Softmax(dim=1)
soft_output=softmax_func(x_input)
print('soft_output:\n',soft_output)

#在softmax的基础上取log
log_output=torch.log(soft_output)
print('log_output:\n',log_output)

#对比softmax与log的结合与nn.LogSoftmaxloss(负对数似然损失)的输出结果,发现两者是一致的。
logsoftmax_func=nn.LogSoftmax(dim=1)
logsoftmax_output=logsoftmax_func(x_input)
print('logsoftmax_output:\n',logsoftmax_output)

#pytorch中关于NLLLoss的默认参数配置为:reducetion=True、size_average=True
nllloss_func=nn.NLLLoss()
nlloss_output=nllloss_func(logsoftmax_output,y_target)
print('nlloss_output:\n',nlloss_output)

#直接使用pytorch中的loss_func=nn.CrossEntropyLoss()看与经过NLLLoss的计算是不是一样
crossentropyloss=nn.CrossEntropyLoss()
crossentropyloss_output=crossentropyloss(x_input,y_target)
print('crossentropyloss_output:\n',crossentropyloss_output)

最后计算得到的结果为:

x_input:
 tensor([[ 2.8883,  0.1760,  1.0774],
        [ 1.1216, -0.0562,  0.0660],
        [-1.3939, -0.0967,  0.5853]])
y_target
 tensor([1, 2, 0])
soft_output:
 tensor([[0.8131, 0.0540, 0.1329],
        [0.6039, 0.1860, 0.2102],
        [0.0841, 0.3076, 0.6083]])
log_output:
 tensor([[-0.2069, -2.9192, -2.0178],
        [-0.5044, -1.6822, -1.5599],
        [-2.4762, -1.1790, -0.4970]])
logsoftmax_output:
 tensor([[-0.2069, -2.9192, -2.0178],
        [-0.5044, -1.6822, -1.5599],
        [-2.4762, -1.1790, -0.4970]])
nlloss_output:
 tensor(2.3185)
crossentropyloss_output:
 tensor(2.3185)

通过上面的结果可以看出,直接使用pytorch中的loss_func=nn.CrossEntropyLoss()计算得到的结果与softmax-log-NLLLoss计算得到的结果是一致的。

四. Pytorch CrossEntropyLoss()另外一种实现方式

交叉熵计算公式为:
CE
由于真实的分类任务里面,除了label那一项,其他的概率都为0,所以可以直接简写为:
CE
由于pytorch的交叉熵实现里包括了softmax这一步,所以可以表示为:
CE
化简得到:
CE
代码实现:

import torch

def CrossEntropyLoss(output, target):
    res = -output.gather(dim=1, index=target.view(-1, 1))
    res += torch.log(torch.exp(output).sum(dim=1).view(-1, 1))
    res = res.mean()
    return res

output = torch.tensor([
    [1, 2, 3],
    [4, 5, 6]
], dtype=torch.float32)

target = torch.tensor(
    [0, 1],
)

print(torch.nn.CrossEntropyLoss()(output, target))
print(CrossEntropyLoss(output, target))

结果如下:

tensor(1.9076)
tensor(1.9076)

上面代码简写成一句话(表达的是相同含义):

import torch
import torch.nn as nn
class CELoss(nn.Module):
    ''' Cross Entropy Loss'''
    def __init__(self):
        super().__init__()

    def forward(self, pred, target):
        ''' 
        Args:
            pred: prediction of model output    [N, M]
            target: ground truth of sampler [N]
        '''
        eps = 1e-12
      	# standard cross entropy loss
        loss = -1.*pred.gather(1, target.unsqueeze(-1)).reshape(-1,1) + torch.log(torch.exp(pred+eps).sum(dim=1)).reshape(-1,1)

        return loss.mean()

torch.gather用法参考链接:PyTorch中torch.gather()函数

五. 参考链接

Pytorch常用的交叉熵损失函数CrossEntropyLoss()详解
自己实现一个CrossEntropyLoss

你可能感兴趣的:(Pytorch基础,pytorch,深度学习,CrossEntropy,损失函数)