多元线性回归的缺陷_一文看懂线性回归(3个优缺点 8种方法评测)

线性回归是很基础的机器学习算法,本文将通俗易懂的介绍线性回归的基本概念,优缺点,8 种方法的速度评测,还有和逻辑回归的比较。

什么是线性回归?

线性回归的位置如上图所示,它属于机器学习 – 监督学习 – 回归 – 线性回归。

扩展阅读:

什么是回归?

回归的目的是为了预测,比如预测明天的天气温度,预测股票的走势…

回归之所以能预测是因为他通过历史数据,摸透了“套路”,然后通过这个套路来预测未来的结果。

什么是线性?

“越…,越…”符合这种说法的就可能是线性个关系:

「房子」越大,「租金」就越高

「汉堡」买的越多,花的「钱」就越多

杯子里的「水」越多,「重量」就越大

……

但是并非所有“越…,越…”都是线性的,比如“充电越久,电量越高”,他就类似下面的非线性曲线:

线性关系不仅仅只能存在 2 个变量(二维平面)。3 个变量时(三维空间),线性关系就是一个平面,4 个变量时(四维空间),线性关系就是一个体。以此类推…

什么是线性回归?

线性回归本来是是统计学里的概念,现在经常被用在机器学习中。

如果 2 个或者多个变量之间存在“线性关系”,那么我们就可以通过历史数据,摸清变量之间的“套路”,建立一个有效的模型,来预测未来的变量结果。

线性回归的优缺点

优点:建模速度快,不需要很复杂的计算,在数据量大的情况下依然运行速度很快。

你可能感兴趣的:(多元线性回归的缺陷)