- 生成式AI技术对未来知识生产模式的颠覆性影响:跨学科案例分析
德宿
人工智能
引言随着人工智能技术的迅猛发展,生成式AI作为一种革命性技术正在深刻地改变人类知识生产和学术研究的范式。生成式AI不仅能够创建原创内容,还能模拟人类思维过程,处理和生成大量数据,从而在各个学科领域展现出广阔的应用前景。本研究报告旨在深入探讨生成式AI技术对未来知识生产模式的颠覆性影响,通过对比传统学术研究与AI辅助研究的范式差异,并选取医学、法学、文学、经济学和艺术学等五个典型领域进行深度案例分析
- ChatGPT驱动的跨学科研究灵感挖掘指南
学境思源AcademicIdeas
学境思源AI写作ChatGPTchatgpt
跨学科研究已成为解决复杂问题的重要手段。学境思源,无论是人工智能与心理学的结合,一键生成论文初稿!还是生态学与经济学的融合,越来越多的研究者正试图打破学科界限,探索全新问题域。但问题是:acaids.com。我们如何高效发现这些跨学科交叉点?使用传统方式,像文献综述、领域专家访谈或大型头脑风暴虽有效,但耗时,且受限于已有认知。今天为大家分享一种高效、智能、可复制的方法——利用ChatGPT进行跨学
- 大模型本地部署,拥有属于自己的ChatGpt
小妖同学学AI
chatgpt
ChatGpt以其强大的信息整合和对话能力惊艳了全球,在自然语言处理上面表现出了惊人的能力。不管用于文案撰写还是程序辅助开发都大大提高了我们的工作效率,但是其使用有一定的门槛,让我们大多数人都望而却步,今天我们利用ollama实现本地大模型的步骤,让我们轻松拥有自己的人工智能。Ollama作为一个轻量级的工具,可以帮助用户在本地运行这些大型语言模型,无需持续依赖云服务,既保护了数据隐私,又能减少网
- PPT 要你好看(全彩)
又是一个装逼的
分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.csdn.net/jiangjunshow也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!PPT,要你好看(全彩)杨臻编著ISBN978-7-121-14725-82011年11月出版定价:49.90元16开264页宣传语:般若黑洞▪百万点击之升华16位知名PPT高手联袂热议内容简介此刻呈现在你面前的
- Spring AI 结合 MCP MySQL 实现对话式数据库查询
没刮胡子
软件开发技术实战专栏人工智能AISpring数据库spring人工智能spring-aimcp-servermysql
在现代应用开发中,将人工智能与数据库查询结合可以创造更自然、更智能的用户交互方式。下面我将详细介绍如何使用SpringAI框架结合MCP(可能指MySQL连接池或相关组件)实现对话中的数据库查询功能。什么是SpringAI和MCPMySQLSpringAI框架概述SpringAI是基于Spring生态的人工智能集成框架,它提供了:与大型语言模型(LLM)的集成能力对话管理和自然语言处理功能业务逻辑
- MiniMax - M1:开源大模型的革命性突破
开源大模型MiniMax-M1研究报告一、引言在人工智能技术飞速发展的当下,大模型领域的竞争愈发激烈。开源大模型以其开放性、可定制性和社区协作的优势,逐渐成为推动人工智能技术进步的重要力量。MiniMax-M1作为全球首个开源大规模混合架构的推理模型,一经发布便引起了广泛关注。它在长上下文处理、推理效率和成本控制等方面展现出了卓越的性能,为人工智能的发展带来了新的思路和方向。本文将对MiniMax
- 深度学习使用Pytorch训练模型步骤
vvvdg
深度学习pytorch人工智能
训练模型是机器学习和深度学习中的核心过程,旨在通过大量数据学习模型参数,以便模型能够对新的、未见过的数据做出准确的预测。训练模型通常包括以下几个步骤:1.数据准备:收集和处理数据,包括清洗、标准化和归一化。将数据分为训练集、验证集和测试集。2.定义模型:选择模型架构,例如决策树、神经网络等。初始化模型参数(权重和偏置)。3.选择损失函数:根据任务类型(如分类、回归)选择合适的损失函数。4.选择优化
- 基于人工智能的图表生成器
警世龙
开发记录人工智能自然语言处理
基于人工智能的图表生成器软件需求分析本项目旨在开发一个基于Web的图表生成工具,利用人工智能技术将自然语言描述转换为专业的流程图、时序图等可视化图表。具体需求如下:支持用户输入自然语言描述来生成图表。提供实时预览功能,让用户能够即时看到生成的图表。允许用户对生成的Mermaid代码进行编辑。支持图表的缩放和平移操作。提供代码保存和图片导出功能。具备快捷键支持,提高用户操作效率。技术选型前端HTML
- Edge-TTS在广电系统中的语音合成技术的创新应用
Edge-TTS在广电系统中的语音合成技术的创新应用作者:本人是一名县级融媒体中心的工程师,多年来一直坚持学习、提升自己。喜欢Python编程、人工智能、网络安全等多领域的技术。摘要随着人工智能技术的快速发展,文字转语音(Text-to-Speech,TTS)系统已成为多种应用的重要组成部分,尤其在广播电视领域。本文介绍了一种基于Edge-TTS大模型的文字转语音工具,该工具结合了现代文本处理和语
- 掌握编程:数字时代的必备技能
afsdfewasdf
AI编程
编程在现代社会的必要性学习编程在当今数字化时代具有显著优势。随着科技发展,编程技能已成为许多行业的基础需求,从软件开发到数据分析,甚至传统行业也在逐步依赖技术解决方案。掌握编程能力可以提升个人竞争力,开拓职业机会。就业市场需求旺盛技术岗位如软件工程师、数据科学家、人工智能专家等持续增长。非技术岗位如市场营销、金融分析也要求基础编程知识处理自动化任务或数据分析。掌握编程技能能显著提高薪资水平和职业发
- 深度剖析AI人工智能在自动驾驶中的系统优化
AI云原生与云计算技术学院
人工智能自动驾驶机器学习ai
深度剖析AI人工智能在自动驾驶中的系统优化关键词:AI人工智能、自动驾驶、系统优化、传感器融合、决策算法摘要:本文深入探讨了AI人工智能在自动驾驶系统中的优化问题。从自动驾驶的背景入手,详细解释了相关核心概念,如传感器、决策算法等。阐述了这些核心概念之间的关系,介绍了核心算法原理和具体操作步骤,还通过数学模型和公式进行了理论支持。给出了项目实战案例,分析了实际应用场景,推荐了相关工具和资源,最后探
- AI教父Hinton:别太相信科技领袖们的公开说辞,他们私下对AI的看法会让你不安 | 不摸鱼的独立开发者日报(第36期)
不摸鱼_
不摸鱼的独立开发者日报人工智能科技产品经理microsoft个人开发游戏
✍️说明日报相关信息:网站:https://daily.nomoyu.com/RSS:https://daily.nomoyu.com/rss/rss.xml欢迎一起沟通交流AI教父Hinton:别太相信科技领袖们的公开说辞,他们私下对AI的看法会让你不安“人工智能教父”GeoffreyHinton在访谈中表示,他对自己毕生的工作成果表示深切忧虑,并致力于警告世界AI带来的巨大风险,他的主要观点如
- openai-go v1.6.0版本详解:新增功能与优化全面解析
福大大架构师每日一题
文心一言vschatgptgolangeasyui开发语言
一、前言openai-go作为OpenAI官方提供的Go语言客户端库,一直备受广大Go语言开发者关注和喜爱。随着人工智能技术的飞速发展,openai-go的迭代速度也在不断加快。最近,openai-go发布了v1.6.0版本,该版本带来了多项新功能和优化,进一步提升了API的灵活性和开发者体验。本文将基于官方发布的完整更新日志,深入解析v1.6.0版本的新增功能、改进细节及实际应用,帮助读者全面掌
- Deepseek:多轮对话与上下文拼接
chilavert318
熬之滴水穿石ai
今天的内容,应该很好理解。我们先从场景切入来理解。首先,你回想一下,有没有遇到过这样的情况:和朋友聊天时,聊了一会儿,突然朋友说起之前的某个话题,你却有点反应不过来,得努力回忆之前说了啥。人工智能之所以“智能”,因为它就不可能这么健忘。在和Deepseek聊天,在多轮对话中,Deepseek就像一个记忆力超强的小伙伴,能清楚记得你们聊过的每一个重要细节,让对话一直顺顺畅畅。这背后呀,藏着Deeps
- MCP 与 AI 任务分解:如何让 AI 高效执行复杂任务?
Echo_Wish
Python进阶人工智能
MCP与AI任务分解:如何让AI高效执行复杂任务?在人工智能应用中,任务分解(TaskDecomposition)是一个绕不开的话题。无论是自动驾驶、智能客服,还是代码生成,AI都需要将复杂问题拆解成可执行的小任务,逐步完成目标。而在AI领域,MCP(Multi-StepCognitiveProcessing,多步认知处理)是一种前沿技术,旨在提升AI的任务分解能力,使其能够更精准、高效地执行复杂
- AIGC领域Prompt工程:原理、方法与行业应用
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶AIGCpromptai
AIGC领域Prompt工程:原理、方法与行业应用关键词:Prompt工程、大语言模型(LLM)、提示设计、少样本学习、AIGC应用、思维链(CoT)、提示优化摘要:随着AIGC(人工智能生成内容)技术的爆发式发展,大语言模型(如GPT-4、LLaMA、通义千问)的性能已达到前所未有的高度。然而,模型的强大能力能否被充分释放,很大程度上依赖于"提示(Prompt)"的设计质量。本文系统解析Prom
- 大语言模型中的思维链提示:解锁高效互动的秘密
t0_54program
大数据与人工智能语言模型人工智能自然语言处理个人开发
在当今的人工智能领域,大语言模型(LLMs)已然成为一颗耀眼的明星,它经过海量训练,能够理解并生成人类语言,在编程等诸多领域助力人们完成日常任务。然而,若想与这些模型实现高效沟通,掌握正确的请求方式至关重要,而思维链提示(Chainofthoughtprompting)便是与LLMs互动时最为高效的技术之一。什么是提示(Prompting)?LLMs基于海量数据集进行训练,以理解并生成类人文本。其
- 人工智能大模型原理与应用实战:大模型在金融风控中的应用
AI天才研究院
LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
文章目录人工智能大模型原理与应用实战:大模型在金融风控中的应用01.背景介绍1.1金融风控的挑战1.2大模型的优势2.核心概念与联系2.1大模型在金融风控中的应用场景2.2大模型与传统风控技术的结合3.核心算法原理具体操作步骤3.1基于大模型的欺诈检测3.2基于大模型的信用评估4.数学模型和公式详细讲解举例说明4.1逻辑回归模型4.2XGBoost模型5.项目实践:代码实例和详细解释说明5.1基于
- 浅谈卷积神经网络(CNN)
cyc&阿灿
cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetworks,CNN)作为深度学习领域最具影响力的架构之一,已在计算机视觉、自然语言处理、医学影像分析等领域取得了革命性突破。本文将系统全面地剖析CNN的核心原理、关键组件、经典模型、数学基础、训练技巧以及最新进展,通过理论解析与代码实践相结合的方式,帮助读者深入掌握这一重要技术。一、CNN基础与核心思想1.1传统神经网络的局限性在处理图像等
- AlphaStar 星际首秀,人工智能走向星辰大海
谷歌开发者
文/王晶,资深工程师,GoogleBrain团队作者王晶,现为GoogleBrain团队的资深工程师,主要致力深度强化学习的研发,和DeepMind团队在强化学习的应用上有许多合作。北京时间1月25日凌晨2点,DeepMind直播了他们的AIAlphaStar和人类顶尖的职业电竞选手对战星际争霸2。根据DeepMind介绍,AlphaStar在2018年12月10日和19日先后以5:0全胜的战绩击
- **双生“基尼”**:跨越世纪的术语撞车与学科分野
在学术的宇宙中,“基尼”(Gini)这个名字如同一个奇特的星标,闪耀在两个看似毫不相关的领域:衡量社会贫富差距的经济学与驱动人工智能的机器学习。然而,当人们在这两个领域都遇到“基尼指数”或“基尼系数”时,困惑油然而生——它们为何如此不同?又为何共享同一个名字?这不是某个“傻逼”的随意命名,而是一场跨越学科与世纪的“术语交通事故”,其背后是学术传承与概念抽象的交织。本文由「大千AI助手」原创发布,专
- AI算力综述和资料整理
木鱼时刻
人工智能
目录总体介绍计算精度传输协议GPU池化资源调度CUDA技术GPU硬件参考链接总体介绍AI算力是人工智能系统的核心基础设施,涵盖了从计算精度、传输协议到硬件架构的完整技术栈。计算精度混合精度训练原生满血版DeepSeek671B是FP8精度。FP16在训练计算力占比有80-90%,FP32占比10%-20%。大模型训练中通常会用到FP16(半精度浮点数),但并不是只使用FP16,而是采用**混合精度
- 【PyTorch】2024保姆级安装教程-Python-(CPU+GPU详细完整版)
金枝玉叶9
程序员知识储备1程序员知识储备2程序员知识储备3pythonpytorch人工智能
【PyTorch】2024保姆级安装教程(CPU+GPU详细完整版)PyTorch是当前最受欢迎的深度学习框架之一。本文将详细讲解在Python环境中安装PyTorch,包括CPU和GPU版本的全方位指南。一、前置环境首先确保已安装Python环境,推荐使用Python3.8或以上版本。验证Python安装:python--versionpip--version推荐使用虚拟环境(如conda或ve
- 【学习】《算法图解》第七章学习笔记:树
程序员
前言在前面的章节中,我们学习了数组、链表、散列表等基本数据结构,以及一些基础算法。本章将介绍一种非常重要的数据结构——树(Tree),特别是二叉搜索树(BinarySearchTree)。树结构在计算机科学中应用广泛,从文件系统到数据库再到人工智能,都能看到树的身影。《算法图解》第七章深入浅出地介绍了树的基本概念、实现和应用,帮助读者理解这一关键数据结构。一、树的基本概念(一)什么是树树是一种分层
- 基于OpenCV图像分割与PyTorch的增强图像分类方案
从零开始学习人工智能
opencvpytorch分类
在图像分类任务中,背景噪声和复杂场景常常会对分类准确率产生负面影响。为了应对这一挑战,本文介绍了一种结合OpenCV图像分割与PyTorch深度学习框架的增强图像分类方案。通过先对图像进行分割提取感兴趣区域(RegionofInterest,ROI),再进行分类,可以有效减少背景干扰,突出关键特征,从而提高分类准确率。该方案在多种复杂场景下表现出色,尤其适用于图像背景复杂或包含多个对象的情况。一、
- 智能体综述和参考资料整理
木鱼时刻
大模型人工智能
目录总体介绍核心组件记忆系统工具系统计划与推理开发框架Single-AgentMulti-Agent智能体平台技术实现通信协议角色系统对话记忆MCP协议参考链接总体介绍智能体(AIAgents)是人工智能领域的重要发展方向,它们能够通过传感器感知环境并通过执行器对环境采取行动。根据罗素和诺维格在《人工智能:一种现代方法》(2016年)中的定义,AIAgent是任何可以通过传感器感知其环境并通过执行
- 主流AI代码编程工具分享
scuter_yu
aiai编程
在当今数字化时代,AI代码编程工具已成为提升开发效率、优化代码质量的重要助手。这些工具利用人工智能技术,为开发者提供从代码生成、补全到调试、优化等一系列功能,极大地简化了编程流程,让编程变得更加高效、便捷和智能。以下将介绍几款热门的AI代码编程工具。通义灵码产品介绍:通义灵码是阿里云出品的基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码优化、注释生成
- Deepoc大模型在半导体技术芯片性能应用协助突破物理极限
Deepoch
人工智能网络智能化AI科技数据分析硬件工程信息与通信
半导体垂直大模型在芯片设计中的应用与技术突破半导体垂直大模型(SemiconductorVerticalLLM)是专为芯片设计、制造与优化领域训练的大规模人工智能模型,其通过融合半导体物理、工艺知识、设计规则及行业经验,正在重构芯片开发全流程。以下从设计流程革新、性能优化、可靠性提升三大维度,结合具体技术路径与行业案例,解析其应用场景与价值。Deepoc模型在半导体技术应用中取得了巨大突破,可以协
- Windows系统部署YOLOv5 v6.1版本的训练与推理环境保姆级教程
lujx_1024
windowsYOLO
文章目录一·概述二·依赖环境(`prerequisites`)2.1硬件环境2.2软件环境三·环境安装3.1创建并激活虚拟环境3.2安装`Pytorch`与`torchvision`3.3校验`Pytorch`安装3.4下载`YOLOv5``v6.1`源码3.5安装`YOLOv5`依赖3.6下载预训练模型3.7安装其他依赖3.8测试环境安装3.9测试训练流程四·参考链接一·概述本文档主要记录使用工
- 卷积神经网络
亿只小灿灿
Python算法与数据结构人工智能cnn人工智能神经网络
一、引言在当今人工智能的浪潮中,卷积神经网络(ConvolutionalNeuralNetwork,CNN)无疑是一颗璀璨的明星。它在图像识别、语音处理、自然语言处理等众多领域取得了巨大的成功,极大地推动了人工智能技术的发展。那么,什么是卷积神经网络?它的算法原理是什么?本文将深入探讨这些问题,并通过Python代码实现一个简单的卷积神经网络,以帮助读者更好地理解和掌握这一强大的技术。二、卷积神经
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D