麻雀算法SSA优化随机森林做拟合回归预测,多输入单输出模型。SSA-RF

麻雀算法SSA优化随机森林做拟合回归预测,多输入单输出模型。SSA-RF_第1张图片

 

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
tic
% restoredefaultpath

%%  导入数据
P_train = xlsread('data','training set','B2:G191')';
T_train= xlsread('data','training set','H2:H191')';
% 测试集——44个样本
P_test=xlsread('data','test set','B2:G45')';
T_test=xlsread('data','test set','H2:H45')';
%%  划分训练集和测试集
M = size(P_train, 2);
N = size(P_test, 2);
f_ = size(P_train, 1);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  参数初始化
pop=10; %种群数量
Max_iter=50; %  设定最大迭代次数
dim = 2;% 维度为2,即优化两个超参数
lb = [1,1];%下边界
ub = [50,50];%上边界
fobj = @(x) fun(x,p_train,t_train);
[Best_pos,Best_score,curve]=SSA(pop,Max_iter,lb,ub,dim,fobj); %开始优化

你可能感兴趣的:(算法,随机森林,回归)