神经网络和深度学习-梯度下降Gradient Descent(下)

梯度下降gradient descent


我们接着用数学公式来看一下梯度下降

首先是梯度

∂ cos ⁡ t ∂ ω \frac{\partial \cos t}{\partial \omega} ωcost

然后我们对权重进行更新

ω = ω − α ∂ cos ⁡ t ∂ ω \omega=\omega-\alpha \frac{\partial \cos t}{\partial \omega} ω=ωαωcost

解析一下梯度求导公式

∂ cost ⁡ ( ω ) ∂ ω = ∂ ∂ ω 1 N ∑ n = 1 N ( x n ⋅ ω − y n ) 2 = 1 N ∑ n = 1 N ∂ ∂ ω ( x n ⋅ ω − y n ) 2 = 1 N ∑ n = 1 N 2 ⋅ ( x n ⋅ ω − y n ) ∂ ( x n ⋅ ω − y n ) ∂ ω = 1 N ∑ n = 1 N 2 ⋅ x n ⋅ ( x n ⋅ ω − y n ) \begin{aligned} \frac{\partial \operatorname{cost}(\omega)}{\partial \omega} &=\frac{\partial}{\partial \omega} \frac{1}{N} \sum_{n=1}^{N}\left(x_{n} \cdot \omega-y_{n}\right)^{2} \\ &=\frac{1}{N} \sum_{n=1}^{N} \frac{\partial}{\partial \omega}\left(x_{n} \cdot \omega-y_{n}\right)^{2} \\ &=\frac{1}{N} \sum_{n=1}^{N} 2 \cdot\left(x_{n} \cdot \omega-y_{n}\right) \frac{\partial\left(x_{n} \cdot \omega-y_{n}\right)}{\partial \omega} \\ &=\frac{1}{N} \sum_{n=1}^{N} 2 \cdot x_{n} \cdot\left(x_{n} \cdot \omega-y_{n}\right) \end{aligned} ωcost(ω)=ωN1n=1N(xnωyn)2=N1n=1Nω(xnωyn)2=N1n=1N2(xnωyn)ω(xnωyn)=N1n=1N2xn(xnωyn)

我们继续进行更新

ω = ω − α 1 N ∑ n = 1 N 2 ⋅ x n ⋅ ( x n ⋅ ω − y n ) \omega=\omega-\alpha \frac{1}{N} \sum_{n=1}^{N} 2 \cdot x_{n} \cdot\left(x_{n} \cdot \omega-y_{n}\right) ω=ωαN1n=1N2xn(xnωyn)

接下来我们来看一下梯度下降的详细代码实现

定义训练集

神经网络和深度学习-梯度下降Gradient Descent(下)_第1张图片

定义训练模型

神经网络和深度学习-梯度下降Gradient Descent(下)_第2张图片

定义损失函数

神经网络和深度学习-梯度下降Gradient Descent(下)_第3张图片

定义梯度函数

神经网络和深度学习-梯度下降Gradient Descent(下)_第4张图片

训练过程,每次都要拿权重-学习率*梯度,学习率这里是超参数,设置为0.01,进行100个epoch

神经网络和深度学习-梯度下降Gradient Descent(下)_第5张图片

最后输出训练日志

import numpy as np
import matplotlib.pyplot as plt

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

w = 1.0


def forward(x):
    return x * w


def cost(xs, ys):
    cost = 0
    for x, y in zip(xs, ys):
        y_pred = forward(x)
        cost += (y_pred - y) ** 2
    return cost / len(xs)


def gradient(xs, ys):
    grad = 0
    for x, y in zip(xs, ys):
        grad += 2 * x * (x * w - y)
    return grad / len(xs)


epoch_list = []
cost_list = []

print('Predict(before training)', 4, forward(4))
for epoch in range(100):
    epoch_list.append(epoch)
    cost_val = cost(x_data, y_data)
    cost_list.append(cost_val)
    grad_val = gradient(x_data, y_data)
    w -= 0.01 * grad_val
    print('Epoch:', epoch, 'w=', w, 'loss=', cost_val)
print('Predict(after training)', 4, forward(4))

plt.plot(epoch_list, cost_list)
plt.ylabel('Cost')
plt.xlabel('Epoch')
plt.show()

下面展示运行结果

Predict(before training) 4 4.0
Epoch: 0 w= 1.0933333333333333 loss= 4.666666666666667
Epoch: 1 w= 1.1779555555555554 loss= 3.8362074074074086
Epoch: 2 w= 1.2546797037037036 loss= 3.1535329869958857
Epoch: 3 w= 1.3242429313580246 loss= 2.592344272332262
Epoch: 4 w= 1.3873135910979424 loss= 2.1310222071581117
Epoch: 5 w= 1.4444976559288012 loss= 1.7517949663820642
Epoch: 6 w= 1.4963445413754464 loss= 1.440053319920117
Epoch: 7 w= 1.5433523841804047 loss= 1.1837878313441108
Epoch: 8 w= 1.5859728283235668 loss= 0.9731262101573632
Epoch: 9 w= 1.6246153643467005 loss= 0.7999529948031382
Epoch: 10 w= 1.659651263674342 loss= 0.6575969151946154
Epoch: 11 w= 1.6914171457314033 loss= 0.5405738908195378
Epoch: 12 w= 1.7202182121298057 loss= 0.44437576375991855
Epoch: 13 w= 1.7463311789976905 loss= 0.365296627844598
Epoch: 14 w= 1.7700069356245727 loss= 0.3002900634939416
Epoch: 15 w= 1.7914729549662791 loss= 0.2468517784170642
Epoch: 16 w= 1.8109354791694263 loss= 0.2029231330489788
Epoch: 17 w= 1.8285815011136133 loss= 0.16681183417217407
Epoch: 18 w= 1.8445805610096762 loss= 0.1371267415488235
Epoch: 19 w= 1.8590863753154396 loss= 0.11272427607497944
Epoch: 20 w= 1.872238313619332 loss= 0.09266436490145864
Epoch: 21 w= 1.8841627376815275 loss= 0.07617422636521683
Epoch: 22 w= 1.8949742154979183 loss= 0.06261859959338009
Epoch: 23 w= 1.904776622051446 loss= 0.051475271914629306
Epoch: 24 w= 1.9136641373266443 loss= 0.04231496130368814
Epoch: 25 w= 1.9217221511761575 loss= 0.03478477885657844
Epoch: 26 w= 1.9290280837330496 loss= 0.02859463421027894
Epoch: 27 w= 1.9356521292512983 loss= 0.023506060193480772
Epoch: 28 w= 1.9416579305211772 loss= 0.01932302619282764
Epoch: 29 w= 1.9471031903392007 loss= 0.015884386331668398
Epoch: 30 w= 1.952040225907542 loss= 0.01305767153735723
Epoch: 31 w= 1.9565164714895047 loss= 0.010733986344664803
Epoch: 32 w= 1.9605749341504843 loss= 0.008823813841374291
Epoch: 33 w= 1.9642546069631057 loss= 0.007253567147113681
Epoch: 34 w= 1.9675908436465492 loss= 0.005962754575689583
Epoch: 35 w= 1.970615698239538 loss= 0.004901649272531298
Epoch: 36 w= 1.9733582330705144 loss= 0.004029373553099482
Epoch: 37 w= 1.975844797983933 loss= 0.0033123241439168096
Epoch: 38 w= 1.9780992835054327 loss= 0.0027228776607060357
Epoch: 39 w= 1.980143350378259 loss= 0.002238326453885249
Epoch: 40 w= 1.9819966376762883 loss= 0.001840003826269386
Epoch: 41 w= 1.983676951493168 loss= 0.0015125649231412608
Epoch: 42 w= 1.9852004360204722 loss= 0.0012433955919298103
Epoch: 43 w= 1.9865817286585614 loss= 0.0010221264385926248
Epoch: 44 w= 1.987834100650429 loss= 0.0008402333603648631
Epoch: 45 w= 1.9889695845897222 loss= 0.0006907091659248264
Epoch: 46 w= 1.9899990900280147 loss= 0.0005677936325753796
Epoch: 47 w= 1.9909325082920666 loss= 0.0004667516012495216
Epoch: 48 w= 1.9917788075181404 loss= 0.000383690560742734
Epoch: 49 w= 1.9925461188164473 loss= 0.00031541069384432885
Epoch: 50 w= 1.9932418143935788 loss= 0.0002592816085930997
Epoch: 51 w= 1.9938725783835114 loss= 0.0002131410058905752
Epoch: 52 w= 1.994444471067717 loss= 0.00017521137977565514
Epoch: 53 w= 1.9949629871013967 loss= 0.0001440315413480261
Epoch: 54 w= 1.9954331083052663 loss= 0.0001184003283899171
Epoch: 55 w= 1.9958593515301082 loss= 9.733033217332803e-05
Epoch: 56 w= 1.9962458120539648 loss= 8.000985883901657e-05
Epoch: 57 w= 1.9965962029289281 loss= 6.57716599593935e-05
Epoch: 58 w= 1.9969138906555615 loss= 5.406722767150764e-05
Epoch: 59 w= 1.997201927527709 loss= 4.444566413387458e-05
Epoch: 60 w= 1.9974630809584561 loss= 3.65363112808981e-05
Epoch: 61 w= 1.9976998600690001 loss= 3.0034471708953996e-05
Epoch: 62 w= 1.9979145397958935 loss= 2.4689670610172655e-05
Epoch: 63 w= 1.9981091827482769 loss= 2.0296006560253656e-05
Epoch: 64 w= 1.9982856590251044 loss= 1.6684219437262796e-05
Epoch: 65 w= 1.9984456641827613 loss= 1.3715169898293847e-05
Epoch: 66 w= 1.9985907355257035 loss= 1.1274479219506377e-05
Epoch: 67 w= 1.9987222668766378 loss= 9.268123006398985e-06
Epoch: 68 w= 1.9988415219681517 loss= 7.61880902783969e-06
Epoch: 69 w= 1.9989496465844576 loss= 6.262999634617916e-06
Epoch: 70 w= 1.9990476795699081 loss= 5.1484640551938914e-06
Epoch: 71 w= 1.9991365628100501 loss= 4.232266273994499e-06
Epoch: 72 w= 1.999217150281112 loss= 3.479110977946351e-06
Epoch: 73 w= 1.999290216254875 loss= 2.859983851026929e-06
Epoch: 74 w= 1.9993564627377531 loss= 2.3510338359374262e-06
Epoch: 75 w= 1.9994165262155628 loss= 1.932654303533636e-06
Epoch: 76 w= 1.999470983768777 loss= 1.5887277332523938e-06
Epoch: 77 w= 1.9995203586170245 loss= 1.3060048068548734e-06
Epoch: 78 w= 1.9995651251461022 loss= 1.0735939958924364e-06
Epoch: 79 w= 1.9996057134657994 loss= 8.825419799121559e-07
Epoch: 80 w= 1.9996425135423248 loss= 7.254887315754342e-07
Epoch: 81 w= 1.999675878945041 loss= 5.963839812987369e-07
Epoch: 82 w= 1.999706130243504 loss= 4.902541385825727e-07
Epoch: 83 w= 1.9997335580874436 loss= 4.0301069098738336e-07
Epoch: 84 w= 1.9997584259992822 loss= 3.312926995781724e-07
Epoch: 85 w= 1.9997809729060159 loss= 2.723373231729343e-07
Epoch: 86 w= 1.9998014154347876 loss= 2.2387338352920307e-07
Epoch: 87 w= 1.9998199499942075 loss= 1.8403387118941732e-07
Epoch: 88 w= 1.9998367546614149 loss= 1.5128402140063082e-07
Epoch: 89 w= 1.9998519908930161 loss= 1.2436218932547864e-07
Epoch: 90 w= 1.9998658050763347 loss= 1.0223124683409346e-07
Epoch: 91 w= 1.9998783299358769 loss= 8.403862850836479e-08
Epoch: 92 w= 1.9998896858085284 loss= 6.908348768398496e-08
Epoch: 93 w= 1.9998999817997325 loss= 5.678969725349543e-08
Epoch: 94 w= 1.9999093168317574 loss= 4.66836551287917e-08
Epoch: 95 w= 1.9999177805941268 loss= 3.8376039345125727e-08
Epoch: 96 w= 1.9999254544053418 loss= 3.154680994333735e-08
Epoch: 97 w= 1.9999324119941766 loss= 2.593287985380858e-08
Epoch: 98 w= 1.9999387202080534 loss= 2.131797981222471e-08
Epoch: 99 w= 1.9999444396553017 loss= 1.752432687141379e-08
Predict(after training) 4 7.999777758621207

输出图像:

神经网络和深度学习-梯度下降Gradient Descent(下)_第6张图片

我们通过上面可以发现,随着训练次数增加,cost的值越来越小,接近于0,权重w在训练到一定的次数之后无限接近2

tip:数据中存在噪声,无法真正到0


下面我们来看一下梯度下降的衍生,随机梯度下降Stochastic Gradient Descent

在梯度下降中损失函数取得是所有损失的均值

随机梯度下降的意思就是在N个样本中随机选一个,拿单个样本的损失对梯度求导,然后更新

神经网络和深度学习-梯度下降Gradient Descent(下)_第7张图片

引用随机梯度下降的原因:当陷入梯度消失时,用单个样本的梯度下降,可能会产生噪声,使得模型向前推动,引用这种随机性,就有可能跨越过鞍点,向最优值前进

神经网络和深度学习-梯度下降Gradient Descent(下)_第8张图片

接下来我们看一下代码根据梯度下降进行了哪些修改

定义单个损失loss

神经网络和深度学习-梯度下降Gradient Descent(下)_第9张图片

梯度上进行了修改

神经网络和深度学习-梯度下降Gradient Descent(下)_第10张图片

训练过程中对每一个样本来求梯度,然后进行更新

神经网络和深度学习-梯度下降Gradient Descent(下)_第11张图片

下面我们看一下完整的代码

import numpy as np
import matplotlib.pyplot as plt

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

w = 1.0


def forward(x):
    return x * w


def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) ** 2


def gradient(x, y):
    return 2 * x * (x * w - y)


epoch_list = []
loss_list = []

print('Predict(before training)', 4, forward(4))
for epoch in range(100):
    epoch_list.append(epoch)
    for x, y in zip(x_data, y_data):
        grad = gradient(x, y)
        w -= 0.01 * grad
        print('\tgrad:', x, y, grad)
        l = loss(x, y)
    loss_list.append(l)
    print('Epoch:', epoch, 'w=', w, 'loss=', l)
print('Predict(after training)', 4, forward(4))

plt.plot(epoch_list, loss_list)
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.show()

运行结果:

Predict(before training) 4 4.0
  grad: 1.0 2.0 -2.0
  grad: 2.0 4.0 -7.84
  grad: 3.0 6.0 -16.2288
Epoch: 0 w= 1.260688 loss= 4.919240100095999
  grad: 1.0 2.0 -1.478624
  grad: 2.0 4.0 -5.796206079999999
  grad: 3.0 6.0 -11.998146585599997
Epoch: 1 w= 1.453417766656 loss= 2.688769240265834
  grad: 1.0 2.0 -1.093164466688
  grad: 2.0 4.0 -4.285204709416961
  grad: 3.0 6.0 -8.87037374849311
Epoch: 2 w= 1.5959051959019805 loss= 1.4696334962911515
  grad: 1.0 2.0 -0.8081896081960389
  grad: 2.0 4.0 -3.1681032641284723
  grad: 3.0 6.0 -6.557973756745939
Epoch: 3 w= 1.701247862192685 loss= 0.8032755585999681
  grad: 1.0 2.0 -0.59750427561463
  grad: 2.0 4.0 -2.3422167604093502
  grad: 3.0 6.0 -4.848388694047353
Epoch: 4 w= 1.7791289594933983 loss= 0.43905614881022015
  grad: 1.0 2.0 -0.44174208101320334
  grad: 2.0 4.0 -1.7316289575717576
  grad: 3.0 6.0 -3.584471942173538
Epoch: 5 w= 1.836707389300983 loss= 0.2399802903801062
  grad: 1.0 2.0 -0.3265852213980338
  grad: 2.0 4.0 -1.2802140678802925
  grad: 3.0 6.0 -2.650043120512205
Epoch: 6 w= 1.8792758133988885 loss= 0.1311689630744999
  grad: 1.0 2.0 -0.241448373202223
  grad: 2.0 4.0 -0.946477622952715
  grad: 3.0 6.0 -1.9592086795121197
Epoch: 7 w= 1.910747160155559 loss= 0.07169462478267678
  grad: 1.0 2.0 -0.17850567968888198
  grad: 2.0 4.0 -0.6997422643804168
  grad: 3.0 6.0 -1.4484664872674653
Epoch: 8 w= 1.9340143044689266 loss= 0.03918700813247573
  grad: 1.0 2.0 -0.13197139106214673
  grad: 2.0 4.0 -0.5173278529636143
  grad: 3.0 6.0 -1.0708686556346834
Epoch: 9 w= 1.9512159834655312 loss= 0.021418922423117836
  grad: 1.0 2.0 -0.09756803306893769
  grad: 2.0 4.0 -0.38246668963023644
  grad: 3.0 6.0 -0.7917060475345892
Epoch: 10 w= 1.9639333911678687 loss= 0.01170720245384975
  grad: 1.0 2.0 -0.07213321766426262
  grad: 2.0 4.0 -0.2827622132439096
  grad: 3.0 6.0 -0.5853177814148953
Epoch: 11 w= 1.9733355232910992 loss= 0.006398948863435593
  grad: 1.0 2.0 -0.05332895341780164
  grad: 2.0 4.0 -0.2090494973977819
  grad: 3.0 6.0 -0.4327324596134101
Epoch: 12 w= 1.9802866323953892 loss= 0.003497551760830656
  grad: 1.0 2.0 -0.039426735209221686
  grad: 2.0 4.0 -0.15455280202014876
  grad: 3.0 6.0 -0.3199243001817109
Epoch: 13 w= 1.9854256707695 loss= 0.001911699652671057
  grad: 1.0 2.0 -0.02914865846100012
  grad: 2.0 4.0 -0.11426274116712065
  grad: 3.0 6.0 -0.2365238742159388
Epoch: 14 w= 1.9892250235079405 loss= 0.0010449010656399273
  grad: 1.0 2.0 -0.021549952984118992
  grad: 2.0 4.0 -0.08447581569774698
  grad: 3.0 6.0 -0.17486493849433593
Epoch: 15 w= 1.9920339305797026 loss= 0.0005711243580809696
  grad: 1.0 2.0 -0.015932138840594856
  grad: 2.0 4.0 -0.062453984255132156
  grad: 3.0 6.0 -0.12927974740812687
Epoch: 16 w= 1.994110589284741 loss= 0.0003121664271570621
  grad: 1.0 2.0 -0.011778821430517894
  grad: 2.0 4.0 -0.046172980007630926
  grad: 3.0 6.0 -0.09557806861579543
Epoch: 17 w= 1.9956458879852805 loss= 0.0001706246229305199
  grad: 1.0 2.0 -0.008708224029438938
  grad: 2.0 4.0 -0.03413623819540135
  grad: 3.0 6.0 -0.07066201306448505
Epoch: 18 w= 1.9967809527381737 loss= 9.326038746484765e-05
  grad: 1.0 2.0 -0.006438094523652627
  grad: 2.0 4.0 -0.02523733053271826
  grad: 3.0 6.0 -0.052241274202728505
Epoch: 19 w= 1.9976201197307648 loss= 5.097447086306101e-05
  grad: 1.0 2.0 -0.004759760538470381
  grad: 2.0 4.0 -0.01865826131080439
  grad: 3.0 6.0 -0.03862260091336722
Epoch: 20 w= 1.998240525958391 loss= 2.7861740127856012e-05
  grad: 1.0 2.0 -0.0035189480832178432
  grad: 2.0 4.0 -0.01379427648621423
  grad: 3.0 6.0 -0.028554152326460525
Epoch: 21 w= 1.99869919972735 loss= 1.5228732143933469e-05
  grad: 1.0 2.0 -0.002601600545300009
  grad: 2.0 4.0 -0.01019827413757568
  grad: 3.0 6.0 -0.021110427464781978
Epoch: 22 w= 1.9990383027488265 loss= 8.323754426231206e-06
  grad: 1.0 2.0 -0.001923394502346909
  grad: 2.0 4.0 -0.007539706449199102
  grad: 3.0 6.0 -0.01560719234984198
Epoch: 23 w= 1.9992890056818404 loss= 4.549616284094891e-06
  grad: 1.0 2.0 -0.0014219886363191492
  grad: 2.0 4.0 -0.005574195454370212
  grad: 3.0 6.0 -0.011538584590544687
Epoch: 24 w= 1.999474353368653 loss= 2.486739429417538e-06
  grad: 1.0 2.0 -0.0010512932626940419
  grad: 2.0 4.0 -0.004121069589761106
  grad: 3.0 6.0 -0.008530614050808794
Epoch: 25 w= 1.9996113831376856 loss= 1.3592075910762856e-06
  grad: 1.0 2.0 -0.0007772337246287897
  grad: 2.0 4.0 -0.0030467562005451754
  grad: 3.0 6.0 -0.006306785335127074
Epoch: 26 w= 1.9997126908902887 loss= 7.429187207079447e-07
  grad: 1.0 2.0 -0.0005746182194226179
  grad: 2.0 4.0 -0.002252503420136165
  grad: 3.0 6.0 -0.00466268207967957
Epoch: 27 w= 1.9997875889274812 loss= 4.060661735575354e-07
  grad: 1.0 2.0 -0.0004248221450375844
  grad: 2.0 4.0 -0.0016653028085471533
  grad: 3.0 6.0 -0.0034471768136938863
Epoch: 28 w= 1.9998429619451539 loss= 2.2194855602869353e-07
  grad: 1.0 2.0 -0.00031407610969225175
  grad: 2.0 4.0 -0.0012311783499932005
  grad: 3.0 6.0 -0.0025485391844828342
Epoch: 29 w= 1.9998838998815958 loss= 1.213131374411496e-07
  grad: 1.0 2.0 -0.00023220023680847746
  grad: 2.0 4.0 -0.0009102249282886277
  grad: 3.0 6.0 -0.0018841656015560204
Epoch: 30 w= 1.9999141657892625 loss= 6.630760559646474e-08
  grad: 1.0 2.0 -0.00017166842147497974
  grad: 2.0 4.0 -0.0006729402121816719
  grad: 3.0 6.0 -0.0013929862392156878
Epoch: 31 w= 1.9999365417379913 loss= 3.624255915449335e-08
  grad: 1.0 2.0 -0.0001269165240174175
  grad: 2.0 4.0 -0.0004975127741477792
  grad: 3.0 6.0 -0.0010298514424817995
Epoch: 32 w= 1.9999530845453979 loss= 1.9809538924707548e-08
  grad: 1.0 2.0 -9.383090920422887e-05
  grad: 2.0 4.0 -0.00036781716408107457
  grad: 3.0 6.0 -0.0007613815296476645
Epoch: 33 w= 1.9999653148414271 loss= 1.0827542027017377e-08
  grad: 1.0 2.0 -6.937031714571162e-05
  grad: 2.0 4.0 -0.0002719316432120422
  grad: 3.0 6.0 -0.0005628985014531906
Epoch: 34 w= 1.999974356846045 loss= 5.9181421028034105e-09
  grad: 1.0 2.0 -5.1286307909848006e-05
  grad: 2.0 4.0 -0.00020104232700646207
  grad: 3.0 6.0 -0.0004161576169003922
Epoch: 35 w= 1.9999810417085633 loss= 3.2347513278475087e-09
  grad: 1.0 2.0 -3.7916582873442906e-05
  grad: 2.0 4.0 -0.0001486330048638962
  grad: 3.0 6.0 -0.0003076703200690645
Epoch: 36 w= 1.9999859839076413 loss= 1.7680576050779005e-09
  grad: 1.0 2.0 -2.8032184717474706e-05
  grad: 2.0 4.0 -0.0001098861640933535
  grad: 3.0 6.0 -0.00022746435967313516
Epoch: 37 w= 1.9999896377347262 loss= 9.6638887447731e-10
  grad: 1.0 2.0 -2.0724530547688857e-05
  grad: 2.0 4.0 -8.124015974608767e-05
  grad: 3.0 6.0 -0.00016816713067413502
Epoch: 38 w= 1.999992339052936 loss= 5.282109892545845e-10
  grad: 1.0 2.0 -1.5321894128117464e-05
  grad: 2.0 4.0 -6.006182498197177e-05
  grad: 3.0 6.0 -0.00012432797771566584
Epoch: 39 w= 1.9999943361699042 loss= 2.887107421958329e-10
  grad: 1.0 2.0 -1.1327660191629008e-05
  grad: 2.0 4.0 -4.4404427951505454e-05
  grad: 3.0 6.0 -9.191716585732479e-05
Epoch: 40 w= 1.9999958126624442 loss= 1.5780416225633037e-10
  grad: 1.0 2.0 -8.37467511161094e-06
  grad: 2.0 4.0 -3.282872643772805e-05
  grad: 3.0 6.0 -6.795546372551087e-05
Epoch: 41 w= 1.999996904251097 loss= 8.625295142578772e-11
  grad: 1.0 2.0 -6.191497806007362e-06
  grad: 2.0 4.0 -2.4270671399762023e-05
  grad: 3.0 6.0 -5.0240289795056015e-05
Epoch: 42 w= 1.999997711275687 loss= 4.71443308235547e-11
  grad: 1.0 2.0 -4.5774486259198e-06
  grad: 2.0 4.0 -1.794359861406747e-05
  grad: 3.0 6.0 -3.714324913239864e-05
Epoch: 43 w= 1.9999983079186507 loss= 2.5768253628059826e-11
  grad: 1.0 2.0 -3.3841626985164908e-06
  grad: 2.0 4.0 -1.326591777761621e-05
  grad: 3.0 6.0 -2.7460449796734565e-05
Epoch: 44 w= 1.9999987490239537 loss= 1.4084469615916932e-11
  grad: 1.0 2.0 -2.5019520926150562e-06
  grad: 2.0 4.0 -9.807652203264183e-06
  grad: 3.0 6.0 -2.0301840059744336e-05
Epoch: 45 w= 1.9999990751383971 loss= 7.698320862431846e-12
  grad: 1.0 2.0 -1.8497232057157476e-06
  grad: 2.0 4.0 -7.250914967116273e-06
  grad: 3.0 6.0 -1.5009393983689279e-05
Epoch: 46 w= 1.9999993162387186 loss= 4.20776540913866e-12
  grad: 1.0 2.0 -1.3675225627451937e-06
  grad: 2.0 4.0 -5.3606884460322135e-06
  grad: 3.0 6.0 -1.109662508014253e-05
Epoch: 47 w= 1.9999994944870796 loss= 2.299889814334344e-12
  grad: 1.0 2.0 -1.0110258408246864e-06
  grad: 2.0 4.0 -3.963221296032771e-06
  grad: 3.0 6.0 -8.20386808086937e-06
Epoch: 48 w= 1.9999996262682318 loss= 1.2570789110540446e-12
  grad: 1.0 2.0 -7.474635363990956e-07
  grad: 2.0 4.0 -2.930057062755509e-06
  grad: 3.0 6.0 -6.065218119744031e-06
Epoch: 49 w= 1.999999723695619 loss= 6.870969979249939e-13
  grad: 1.0 2.0 -5.526087618612507e-07
  grad: 2.0 4.0 -2.166226346744793e-06
  grad: 3.0 6.0 -4.484088535150477e-06
Epoch: 50 w= 1.9999997957248556 loss= 3.7555501141274804e-13
  grad: 1.0 2.0 -4.08550288710785e-07
  grad: 2.0 4.0 -1.6015171322436572e-06
  grad: 3.0 6.0 -3.3151404608133817e-06
Epoch: 51 w= 1.9999998489769344 loss= 2.052716967104274e-13
  grad: 1.0 2.0 -3.020461312175371e-07
  grad: 2.0 4.0 -1.1840208351543424e-06
  grad: 3.0 6.0 -2.4509231284497446e-06
Epoch: 52 w= 1.9999998883468353 loss= 1.1219786256679713e-13
  grad: 1.0 2.0 -2.2330632942768602e-07
  grad: 2.0 4.0 -8.753608113920563e-07
  grad: 3.0 6.0 -1.811996877876254e-06
Epoch: 53 w= 1.9999999174534755 loss= 6.132535848018759e-14
  grad: 1.0 2.0 -1.6509304900935717e-07
  grad: 2.0 4.0 -6.471647520100987e-07
  grad: 3.0 6.0 -1.3396310407642886e-06
Epoch: 54 w= 1.999999938972364 loss= 3.351935118167793e-14
  grad: 1.0 2.0 -1.220552721115098e-07
  grad: 2.0 4.0 -4.784566662863199e-07
  grad: 3.0 6.0 -9.904052991061008e-07
Epoch: 55 w= 1.9999999548815364 loss= 1.8321081844499955e-14
  grad: 1.0 2.0 -9.023692726373156e-08
  grad: 2.0 4.0 -3.5372875473171916e-07
  grad: 3.0 6.0 -7.322185204827747e-07
Epoch: 56 w= 1.9999999666433785 loss= 1.0013977760018664e-14
  grad: 1.0 2.0 -6.671324292994996e-08
  grad: 2.0 4.0 -2.615159129248923e-07
  grad: 3.0 6.0 -5.413379398078177e-07
Epoch: 57 w= 1.9999999753390494 loss= 5.473462367088053e-15
  grad: 1.0 2.0 -4.932190122985958e-08
  grad: 2.0 4.0 -1.9334185274999527e-07
  grad: 3.0 6.0 -4.002176350326181e-07
Epoch: 58 w= 1.9999999817678633 loss= 2.991697274308627e-15
  grad: 1.0 2.0 -3.6464273378555845e-08
  grad: 2.0 4.0 -1.429399514307761e-07
  grad: 3.0 6.0 -2.9588569994132286e-07
Epoch: 59 w= 1.9999999865207625 loss= 1.6352086111474931e-15
  grad: 1.0 2.0 -2.6958475007887728e-08
  grad: 2.0 4.0 -1.0567722164012139e-07
  grad: 3.0 6.0 -2.1875184863517916e-07
Epoch: 60 w= 1.999999990034638 loss= 8.937759877335403e-16
  grad: 1.0 2.0 -1.993072418216002e-08
  grad: 2.0 4.0 -7.812843882959442e-08
  grad: 3.0 6.0 -1.617258700292723e-07
Epoch: 61 w= 1.9999999926324883 loss= 4.885220495987371e-16
  grad: 1.0 2.0 -1.473502342363986e-08
  grad: 2.0 4.0 -5.7761292637792394e-08
  grad: 3.0 6.0 -1.195658771990793e-07
Epoch: 62 w= 1.99999999455311 loss= 2.670175009618106e-16
  grad: 1.0 2.0 -1.0893780100218464e-08
  grad: 2.0 4.0 -4.270361841918202e-08
  grad: 3.0 6.0 -8.839649012770678e-08
Epoch: 63 w= 1.9999999959730488 loss= 1.4594702493172377e-16
  grad: 1.0 2.0 -8.05390243385773e-09
  grad: 2.0 4.0 -3.1571296688071016e-08
  grad: 3.0 6.0 -6.53525820126788e-08
Epoch: 64 w= 1.9999999970228268 loss= 7.977204100704301e-17
  grad: 1.0 2.0 -5.9543463493128e-09
  grad: 2.0 4.0 -2.334103754719763e-08
  grad: 3.0 6.0 -4.8315948575350376e-08
Epoch: 65 w= 1.9999999977989402 loss= 4.360197735196887e-17
  grad: 1.0 2.0 -4.402119557767037e-09
  grad: 2.0 4.0 -1.725630838222969e-08
  grad: 3.0 6.0 -3.5720557178819945e-08
Epoch: 66 w= 1.9999999983727301 loss= 2.3832065197304227e-17
  grad: 1.0 2.0 -3.254539748809293e-09
  grad: 2.0 4.0 -1.2757796596929438e-08
  grad: 3.0 6.0 -2.6408640607655798e-08
Epoch: 67 w= 1.9999999987969397 loss= 1.3026183953845832e-17
  grad: 1.0 2.0 -2.406120636067044e-09
  grad: 2.0 4.0 -9.431992964437086e-09
  grad: 3.0 6.0 -1.9524227568012975e-08
Epoch: 68 w= 1.999999999110563 loss= 7.11988308874388e-18
  grad: 1.0 2.0 -1.7788739370416806e-09
  grad: 2.0 4.0 -6.97318647269185e-09
  grad: 3.0 6.0 -1.4434496264925656e-08
Epoch: 69 w= 1.9999999993424284 loss= 3.89160224698574e-18
  grad: 1.0 2.0 -1.3151431055291596e-09
  grad: 2.0 4.0 -5.155360582875801e-09
  grad: 3.0 6.0 -1.067159693945996e-08
Epoch: 70 w= 1.9999999995138495 loss= 2.1270797208746147e-18
  grad: 1.0 2.0 -9.72300906454393e-10
  grad: 2.0 4.0 -3.811418736177075e-09
  grad: 3.0 6.0 -7.88963561149103e-09
Epoch: 71 w= 1.9999999996405833 loss= 1.1626238773828175e-18
  grad: 1.0 2.0 -7.18833437218791e-10
  grad: 2.0 4.0 -2.8178277489132597e-09
  grad: 3.0 6.0 -5.832902161273523e-09
Epoch: 72 w= 1.999999999734279 loss= 6.354692062078993e-19
  grad: 1.0 2.0 -5.314420015167798e-10
  grad: 2.0 4.0 -2.0832526814729135e-09
  grad: 3.0 6.0 -4.31233715403323e-09
Epoch: 73 w= 1.9999999998035491 loss= 3.4733644793346653e-19
  grad: 1.0 2.0 -3.92901711165905e-10
  grad: 2.0 4.0 -1.5401742103904326e-09
  grad: 3.0 6.0 -3.188159070077745e-09
Epoch: 74 w= 1.9999999998547615 loss= 1.8984796531526204e-19
  grad: 1.0 2.0 -2.9047697580608656e-10
  grad: 2.0 4.0 -1.1386696030513122e-09
  grad: 3.0 6.0 -2.3570478902001923e-09
Epoch: 75 w= 1.9999999998926234 loss= 1.0376765851119951e-19
  grad: 1.0 2.0 -2.1475310418850313e-10
  grad: 2.0 4.0 -8.418314934033333e-10
  grad: 3.0 6.0 -1.7425900722400911e-09
Epoch: 76 w= 1.9999999999206153 loss= 5.671751114309842e-20
  grad: 1.0 2.0 -1.5876944203796484e-10
  grad: 2.0 4.0 -6.223768167501476e-10
  grad: 3.0 6.0 -1.2883241140571045e-09
Epoch: 77 w= 1.9999999999413098 loss= 3.100089617511693e-20
  grad: 1.0 2.0 -1.17380327679939e-10
  grad: 2.0 4.0 -4.601314884666863e-10
  grad: 3.0 6.0 -9.524754318590567e-10
Epoch: 78 w= 1.9999999999566096 loss= 1.6944600977692705e-20
  grad: 1.0 2.0 -8.678080476443029e-11
  grad: 2.0 4.0 -3.4018121652934497e-10
  grad: 3.0 6.0 -7.041780492045291e-10
Epoch: 79 w= 1.9999999999679208 loss= 9.2616919156479e-21
  grad: 1.0 2.0 -6.415845632545825e-11
  grad: 2.0 4.0 -2.5150193039280566e-10
  grad: 3.0 6.0 -5.206075570640678e-10
Epoch: 80 w= 1.9999999999762834 loss= 5.062350511130293e-21
  grad: 1.0 2.0 -4.743316850408519e-11
  grad: 2.0 4.0 -1.8593837580738182e-10
  grad: 3.0 6.0 -3.8489211817704927e-10
Epoch: 81 w= 1.999999999982466 loss= 2.7669155644059242e-21
  grad: 1.0 2.0 -3.5067948545020045e-11
  grad: 2.0 4.0 -1.3746692673066718e-10
  grad: 3.0 6.0 -2.845563784603655e-10
Epoch: 82 w= 1.9999999999870368 loss= 1.5124150106147723e-21
  grad: 1.0 2.0 -2.5926372160256506e-11
  grad: 2.0 4.0 -1.0163070385260653e-10
  grad: 3.0 6.0 -2.1037571684701106e-10
Epoch: 83 w= 1.999999999990416 loss= 8.26683933105326e-22
  grad: 1.0 2.0 -1.9167778475548403e-11
  grad: 2.0 4.0 -7.51381179497912e-11
  grad: 3.0 6.0 -1.5553425214420713e-10
Epoch: 84 w= 1.9999999999929146 loss= 4.518126871054872e-22
  grad: 1.0 2.0 -1.4170886686315498e-11
  grad: 2.0 4.0 -5.555023108172463e-11
  grad: 3.0 6.0 -1.1499068364173581e-10
Epoch: 85 w= 1.9999999999947617 loss= 2.469467919185614e-22
  grad: 1.0 2.0 -1.0476508549572827e-11
  grad: 2.0 4.0 -4.106759377009439e-11
  grad: 3.0 6.0 -8.500933290633839e-11
Epoch: 86 w= 1.9999999999961273 loss= 1.349840097651456e-22
  grad: 1.0 2.0 -7.745359908994942e-12
  grad: 2.0 4.0 -3.036149109902908e-11
  grad: 3.0 6.0 -6.285105769165966e-11
Epoch: 87 w= 1.999999999997137 loss= 7.376551550022107e-23
  grad: 1.0 2.0 -5.726086271806707e-12
  grad: 2.0 4.0 -2.2446045022661565e-11
  grad: 3.0 6.0 -4.646416584819235e-11
Epoch: 88 w= 1.9999999999978835 loss= 4.031726170507742e-23
  grad: 1.0 2.0 -4.233058348290797e-12
  grad: 2.0 4.0 -1.659294923683774e-11
  grad: 3.0 6.0 -3.4351188560322043e-11
Epoch: 89 w= 1.9999999999984353 loss= 2.2033851437431755e-23
  grad: 1.0 2.0 -3.1294966618133913e-12
  grad: 2.0 4.0 -1.226752033289813e-11
  grad: 3.0 6.0 -2.539835008974478e-11
Epoch: 90 w= 1.9999999999988431 loss= 1.2047849775995315e-23
  grad: 1.0 2.0 -2.3137047833188262e-12
  grad: 2.0 4.0 -9.070078021977679e-12
  grad: 3.0 6.0 -1.8779644506139448e-11
Epoch: 91 w= 1.9999999999991447 loss= 6.5840863393251405e-24
  grad: 1.0 2.0 -1.7106316363424412e-12
  grad: 2.0 4.0 -6.7057470687359455e-12
  grad: 3.0 6.0 -1.3882228699912957e-11
Epoch: 92 w= 1.9999999999993676 loss= 3.5991747246272455e-24
  grad: 1.0 2.0 -1.2647660696529783e-12
  grad: 2.0 4.0 -4.957811938766099e-12
  grad: 3.0 6.0 -1.0263789818054647e-11
Epoch: 93 w= 1.9999999999995324 loss= 1.969312363793734e-24
  grad: 1.0 2.0 -9.352518759442319e-13
  grad: 2.0 4.0 -3.666400516522117e-12
  grad: 3.0 6.0 -7.58859641791787e-12
Epoch: 94 w= 1.9999999999996543 loss= 1.0761829795642296e-24
  grad: 1.0 2.0 -6.914468997365475e-13
  grad: 2.0 4.0 -2.7107205369247822e-12
  grad: 3.0 6.0 -5.611511255665391e-12
Epoch: 95 w= 1.9999999999997444 loss= 5.875191475205477e-25
  grad: 1.0 2.0 -5.111466805374221e-13
  grad: 2.0 4.0 -2.0037305148434825e-12
  grad: 3.0 6.0 -4.1460168631601846e-12
Epoch: 96 w= 1.999999999999811 loss= 3.2110109830478153e-25
  grad: 1.0 2.0 -3.779199175824033e-13
  grad: 2.0 4.0 -1.4814816040598089e-12
  grad: 3.0 6.0 -3.064215547965432e-12
Epoch: 97 w= 1.9999999999998603 loss= 1.757455879087579e-25
  grad: 1.0 2.0 -2.793321129956894e-13
  grad: 2.0 4.0 -1.0942358130705543e-12
  grad: 3.0 6.0 -2.2648549702353193e-12
Epoch: 98 w= 1.9999999999998967 loss= 9.608404711682446e-26
  grad: 1.0 2.0 -2.0650148258027912e-13
  grad: 2.0 4.0 -8.100187187665142e-13
  grad: 3.0 6.0 -1.6786572132332367e-12
Epoch: 99 w= 1.9999999999999236 loss= 5.250973729513143e-26
Predict(after training) 4 7.9999999999996945

显示图像为:

神经网络和深度学习-梯度下降Gradient Descent(下)_第12张图片

tips:在目前的深度学习中,我们使用的更多的时小批量梯度下降(MBGD),采用的就是mini-batch

你可能感兴趣的:(神经网络,Python深度学习,深度学习,神经网络)