- 【AI大模型】搭建本地大模型GPT-NeoX:详细步骤及常见问题处理
qzw1210
gpt人工智能深度学习
搭建本地大模型GPT-NeoX:详细步骤及常见问题处理GPT-NeoX是一个开源的大型语言模型框架,由EleutherAI开发,可用于训练和部署类似GPT-3的大型语言模型。本指南将详细介绍如何在本地环境中搭建GPT-NeoX,并解决过程中可能遇到的常见问题。1.系统要求1.1硬件要求1.2软件要求操作系统:Linux(推荐Ubuntu20.04或更高版本)CUDA:11.2或更高版本Python
- 深度学习框架PyTorch——从入门到精通(6.2)自动微分机制
Fansv587
深度学习pytorch人工智能经验分享python机器学习
本节自动微分机制是上一节自动微分的扩展内容自动微分是如何记录运算历史的保存张量非可微函数的梯度在本地设置禁用梯度计算设置requires_grad梯度模式(GradModes)默认模式(梯度模式)无梯度模式推理模式评估模式(`nn.Module.eval()`)自动求导中的原地操作原地操作的正确性检查多线程自动求导CPU上的并发不确定性计算图保留自动求导节点的线程安全性C++钩子函数不存在线程安全
- Pytorch深度学习教程_9_nn模块构建神经网络
tRNA做科研
深度学习保姆教程深度学习pytorch神经网络
欢迎来到《深度学习保姆教程》系列的第九篇!在前面的几篇中,我们已经介绍了Python、numpy及pytorch的基本使用,进行了梯度及神经网络的实践并学习了激活函数和激活函数,在上一个教程中我们学习了优化算法。今天,我们将开始使用pytorch构建我们自己的神经网络。欢迎订阅专栏进行系统学习:深度学习保姆教程_tRNA做科研的博客-CSDN博客目录1.理解nn模块:(1)使用nn.Sequent
- vggt 3d重建 相机位姿,新视角生成
AI算法网奇
3D视觉人工智能深度学习
vggt动态追踪实时重建https://github.com/facebookresearch/vggtimporttorchfromvggt.models.vggtimportVGGTfromvggt.utils.load_fnimportload_and_preprocess_imagesdevice="cuda"iftorch.cuda.is_available()else"cpu"dtyp
- 基于 PyTorch 的 MNIST 手写数字分类模型
欣然~
pytorch分类人工智能
一、概述本代码使用PyTorch框架构建了一个简单的神经网络模型,用于解决MNIST手写数字分类任务。代码主要包括数据的加载与预处理、神经网络模型的构建、损失函数和优化器的定义、模型的训练、评估以及最终模型的保存等步骤。二、依赖库torch:PyTorch深度学习框架的核心库,提供了张量操作、自动求导等功能。torch.nn:PyTorch的神经网络模块,包含了各种神经网络层、损失函数等。torc
- 《AI医疗系统开发实战录》第6期——智能导诊系统实战
骆驼_代码狂魔
程序员的法宝人工智能djangopythonneo4j知识图谱
关注我,后期文章全部免费开放,一起推进AI医疗的发展核心主题:如何构建95%准确率的智能导诊系统?技术突破:结合BERT+知识图谱的混合模型设计一、智能导诊架构设计python基于BERT的意图识别模型(PyTorch)fromtransformersimportBertTokenizer,BertForSequenceClassificationimporttorchclassTriageMod
- SenseVoice 部署记录
安静六角
开源软件
最近试用了SenseVoice(阿里团队开源的语音转文字)效果可以,可以本地部署,有webui界面,测试了万字以上的转换效果可以。首先部署好conda环境和cuda,这个可以查看他人的文章。步骤1.创建虚拟环境:condacreate-nmainenvpython=3.102.然后安装依赖condaactivatemainenvpipinstall-rC:\Users\xx\Documents\P
- 深度学习 | pytorch + torchvision + python 版本对应及环境安装
zfgfdgbhs
深度学习pythonpytorch
目录一、版本对应二、安装命令(pip)1.版本(1)v2.5.1~v2.0.0(2)v1.13.1~v1.11.0(3)v1.10.1~v1.7.02.安装全过程(1)选择版本(2)安装结果参考文章一、版本对应下表来自pytorch的github官方文档:pytorch/vision:Datasets,TransformsandModelsspecifictoComputerVisionpytor
- 【最新】TensorFlow、cuDNN、CUDA三者之间的最新版本对应及下载地址
江上_酒
开发环境及工具配置TensorFlowCUDAcuDNN
TensorFlow、cuDNN、CUDA对应关系官网查询地址CUDA下载地址cuDNN下载地址VersionPythonversionCompilerBuildtoolscuDNNCUDAtensorflow_gpu-2.9.03.7-3.10MSVC2019Bazel5.0.08.111.2tensorflow_gpu-2.8.03.7-3.10MSVC2019Bazel4.2.18.111.
- PyTorch核心基础知识点
niuTaylor
编程区pytorch人工智能python
PyTorch核心基础知识点,结合最新特性与工业级实践,按优先级和逻辑关系分层解析:▍核心基石:张量编程(TensorProgramming)1.张量创建(8种生产级初始化)#设备自动选择(2024最佳实践)device="cuda"iftorch.cuda.is_available()else"mps"iftorch.backends.mps.is_available()else"cpu"#关键
- Linux部署模型报错OSError: Error no file named pytorch_model.bin, tf_model.h5, model.ckpt.index or flax_mod
dkgee
linuxpytorch运维
报错内容:OSError:Errornofilenamedpytorch_model.bin,tf_model.h5,model.ckpt.indexorflax_model.msgpackfoundindirectory主要原因是transformer版本不对,需要升级pipinstall--upgradehuggingface_hubpipinstalltransformers[torch]其
- AI模型技术演进与行业应用图谱
智能计算研究中心
其他
内容概要当前AI模型技术正经历从基础架构到行业落地的系统性革新。主流深度学习框架如TensorFlow和PyTorch持续优化动态计算图与分布式训练能力,而MXNet凭借高效的异构计算支持在边缘场景崭露头角。与此同时,模型压缩技术通过量化和知识蒸馏将参数量降低60%-80%,联邦学习则通过加密梯度交换实现多机构数据协同训练。在应用层面,医疗诊断模型通过迁移学习在CT影像分类任务中达到98.2%的准
- 模型优化驱动产业应用创新
智能计算研究中心
其他
内容概要当前模型优化技术的迭代正沿着多维路径快速演进,其核心驱动力在于突破算法性能与产业需求间的适配瓶颈。以自适应学习机制与迁移学习框架为基础的优化策略,显著提升了模型在跨场景应用中的泛化能力,而超参数自动调优技术则通过PyTorch、TensorFlow等主流框架的接口标准化,降低了复杂模型的开发门槛。在部署层面,边缘计算与联邦学习的协同应用不仅缩短了金融预测、医疗影像分析等场景的响应延迟,更通
- 基于roop/insightface将视频中包含指定人脸的视频片段提取并合并成新视频
阆遤
pythonrooppytorchinsightface
利用insightface.app.FaceAnalysis提最一个视频中包含指定人脸的视频片段,并将其合并成一个新视频,使用“buffalo_l”模型,模型需安装在代码当前目录下的.\models中。需要roop或其他支持pytorch、insightface、moviepy的环境。pytorch安装请见我其他文章。#cython:language_level=3str#-*-coding:ut
- 关于pytorch3d的安装
诚威_lol_中大努力中
人工智能pytorch人工智能python
更新1:2025_2_04今天发现,原来的pytorch3d不见了,在我的aaa1环境中。重新安装,我发现最好用的还是去github下载最新的pytorch3d的zip,unzip之后,进去pipinstall-e.然后安装成功!1、参考文章1:windows安装PyTorch3D详细指南-哔哩哔哩(bilibili.com)这篇文章巨好2、参考文章2:pytorch3d/INSTALL.mdat
- os.environ[‘CUDA_VISIBLE_DEVICES‘] = 的用法
@锦瑟五十弦
深度学习人工智能
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录os.environ['CUDA_VISIBLE_DEVICES']=单值作用os.environ['CUDA_VISIBLE_DEVICES']=多值的作用os.environ[‘CUDA_VISIBLE_DEVICES’]=单值作用一定要在importtorch之前定义这句话importosos.environ['CUDA
- 【零基础入门】一篇弄懂nn.Sequential以及ModuleList的使用(呕心沥血版)
十二月的猫
PyTorch深度学习pytorch零基础入门
个人主页:十二月的猫-CSDN博客系列专栏:《PyTorch科研加速指南:即插即用式模块开发》CSDN博客十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光目录1.前言2.Sequential类的使用2.1序列容器简单注入2.2序列容器字典注入2.3序列容器函数注入2.4序列容器修改2.5序列容器删除3.nn.ModuleList()的使用3.1定义模型3.2使用模型4.总结1.前言《
- 位宽512bit显卡_6144 CUDA/512bit位宽 Maxwell架构曝光
李涛PS
位宽512bit显卡
【IT168资讯】NVIDIA目前一代的显卡有GK104和GK110两大分支,它们的侧重点不同,但都是基于Kepler(开普勒,天文学家)架构的,下一代架构名为Maxwell(麦克斯韦尔,物理学家),根据之前的传闻Maxwell最快将在明年Q1季度问世,制程有可能继续使用TSMC的28nm工艺。现在网上又流传开Maxwell的架构设计了,旗舰GM100将有6144个CUDA核心,512bit位宽显
- CUDA 学习(3)——CUDA 初步实践
哦豁灬
CUDA学习笔记学习CUDA
1定位threadCUDA中提供了blockIdx,threadIdx,blockDim,GridDim来定位发起thread,下面发起1个grid,里面有2个block,每个block里有5个threads。程序让每个thread输出自己的id号:#include__global__voidprint_id(){intid=blockDim.x*blockIdx.x+threadIdx.x;pr
- pytorch v1.4.0安装问题
大柠丶
pytorch人工智能python
直接使用conda安装报错:(CenterNet)C:\Users\16323>condainstallpytorch==1.4.0torchvision==0.5.0cudatoolkit=10.1-cpytorch-cconda-forgeChannels:-pytorch-conda-forge-defaultsPlatform:win-64Collectingpackagemetadata
- Windows和Linux系统上的Mamba_ssm环境配置
清纯世纪
笔记python深度学习人工智能
目录一、Linux系统安装二、Win系统安装1)、安装causal_conv1d1、第一种方法2、第二种方法(感觉可靠)3、第三种方法:直接下载大神编译好的文件进行安装2)、安装mamba-ssm1、第一种方法2、第二种方法:直接下载大神编译好的文件进行安装一、Linux系统安装如果自己的系统不是cuda11.8,那么需要先创建一个新环境来安装对应的cuda版本:condacreate-nyour
- Vision mamba(mamba_ssm)安装踩坑指南
ggitjcg
深度学习python
在这篇博客中,我将分享我在linux环境安装和使用VisionMamba(mamba_ssm)过程中遇到的一些问题和解决方法。前置检查:PyTorch和Python版本在安装mamba_ssm前,请确保你的PyTorch和Python环境版本正确。以下代码可用来检查环境信息:importtorchprint("PyTorchVersion:{}".format(torch.__version__)
- 关于forward函数
oioz
深度学习
定义forward函数是模型的核心前向传播逻辑,定义了输入数据如何在模型中传递和计算。它将输入数据通过模型的各层(如卷积层、全连接层等),计算出模型的输出。作用负责模型的主要计算逻辑。在训练和验证过程中都会被调用。特点必须实现:在PyTorch中,forward函数是模型的核心部分,必须显式定义。灵活性高:可以根据模型需要,自由定义forward函数的内容,包括各种计算操作。示例(PyTorch)
- Ubuntu和Windows系统之Mamba_ssm安装
Netceor
Pythonubuntuwindowslinux
Mamba的论文:https://arxiv.org/abs/2312.00752Mamba的github:https://github.com/state-spaces/mamba一、Ubuntu安装直接新建一个环境是最好的,不然很容易产生各种冲突#创建环境和相关包condacreate-nmambapython=3.10.13condaactivatemambacondainstallcuda
- 使用PyTorch搭建Transformer神经网络:入门篇
DASA13
pytorchtransformer神经网络
1.简介Transformer是一种强大的神经网络架构,在自然语言处理等多个领域取得了巨大成功。本教程将指导您使用PyTorch框架从头开始构建一个Transformer模型。我们将逐步解释每个组件,并提供详细的代码实现。2.环境设置首先,确保您的系统中已安装Python(推荐3.7+版本)。然后,安装PyTorch和其他必要的库:pipinstalltorchnumpymatplotlib3.P
- PyTorch数据归一化处理:transforms
2401_87555420
pytorch人工智能python
##1.数据归一化处理:transforms.Normalize###1.1理解torchvision*torchvision.transforms:常用的图像预处理方法*torchvision.datasets:常用的数据集Dataset实现*torchvision.models:常用的CV(预训练)模型实现torchvision.transforms:常用的数据预处理方法,提升泛化能力,包括:
- 不用再当“技术宅“!这个AI神器让我5分钟变身人工智能达人
阳光永恒736
AI工具人工智能deepseek一键包本地部署AI资源
最近我在朋友圈刷到好多朋友都在玩AI画图、AI写诗,看得我心痒痒。可每次想自己试试,打开教程就被满屏的代码吓退——"Python环境配置"、"CUDA驱动安装"这些词比数学作业还让人头疼。直到我发现了一个叫DeepSeek本地部署一键包的神器,我的AI探索之旅终于变得像搭乐高一样简单!夸克网盘分享一、原来AI离我们这么近上周三放学路上,我看见隔壁班的小美用AI给自己照片生成古风造型,这让我突然意识
- Pytorch中的torch.utils.data.Dataset 类
小白的高手之路
深度学习(DL)Pytorch实战深度学习pythonpytorch
1、使用方法fromtorch.utils.dataimportDataset2、torch.utils.data.Dataset类的定义classDataset(Generic[_T_co]):r"""Anabstractclassrepresentinga:class:`Dataset`.Alldatasetsthatrepresentamapfromkeystodatasamplesshou
- 从零搭建Pytorch模型教程(七)单机多卡和多机多卡训练
AI大模型探索者
pytorch人工智能pythontransformer深度学习ai机器学习
前言本文主要介绍单机多卡训练和多机多卡训练的实现方法和一些注意事项。其中单机多卡训练介绍两种实现方式,一种是DP方式,一种是DDP方式。多机多卡训练主要介绍两种实现方式,一种是通过horovod库,一种是DDP方式。单机单卡训练前面我们已经介绍了一个完整的训练流程,但这里由于要介绍单机多卡和多机多卡训练的代码,为了能更好地理解它们之间的区别,这里先放一个单机单卡也就是一般情况下的代码流程。impo
- PyTorch基础知识讲解(一)完整训练流程示例
苏雨流丰
机器学习pytorch人工智能python机器学习深度学习
文章目录Tutorial1.数据处理2.网络模型定义3.损失函数、模型优化、模型训练、模型评价4.模型保存、模型加载、模型推理Tutorial大多数机器学习工作流程涉及处理数据、创建模型、优化模型参数和保存训练好的模型。本教程向你介绍一个用PyTorch实现的完整的ML工作流程,并提供链接来了解这些概念中的每一个。我们将使用FashionMNIST数据集来训练一个神经网络,预测输入图像是否属于以下
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc