- vLLM框架:使用大模型推理框架
CITY_OF_MO_GY
人工智能
vLLM专为高效部署大规模语言模型设计,尤其适合高并发推理场景,关于对vLLM的介绍请看这篇博文。以下从安装配置、基础推理、高级功能、服务化部署到多模态扩展逐步讲解。1.环境安装与配置1.1硬件要求GPU:支持CUDA11.8及以上(推荐NVIDIAA100/H100,RTX4090等消费级卡需注意显存限制)显存:至少20GB(运行7B模型),推荐40GB+(运行13B/70B模型)1.2安装步骤
- 【Linux 22.4 ubuntu 安装cuda12.1 完整方案】
放飞自我的Coder
linuxcudalinuxubuntu
下载cuda12.1官网网址wgethttps://developer.download.nvidia.com/compute/cuda/12.1.1/local_installers/cuda_12.1.1_530.30.02_linux.runsudoshcuda_12.1.1_530.30.02_linux.run!import!如果已经安装驱动,则不要选择dirver那项添加环境变量vim
- 【大模型】DeepSeek-R1-Distill-Qwen部署及API调用
油泼辣子多加
大模型实战算法gptlangchain人工智能
DeepSeek-R1-Distill-Qwen是由中国人工智能公司深度求索(DeepSeek)开发的轻量化大语言模型,基于阿里巴巴的Qwen系列模型通过知识蒸馏技术优化而来。当前模型开源后,我们可以将其部署,使用API方式进行本地调用1.部署环境本文中的部署基础环境如下所示:PyTorch2.5.1Python3.12(ubuntu22.04)Cuda12.4GPURTX3090(24GB)*1
- opencv cuda例程 OpenCV和Cuda结合编程
weixin_44602056
opencvC++
本文转载自:https://www.fuwuqizhijia.com/linux/201704/70863.html此网页,仅保存下来供随时查看一、利用OpenCV中提供的GPU模块目前,OpenCV中已提供了许多GPU函数,直接使用OpenCV提供的GPU模块,可以完成大部分图像处理的加速操作。该方法的优点是使用简单,利用GpuMat管理CPU与GPU之间的数据传输,而且不需要关注内核函数调用参
- 利用CUDA与OpenCV实现高效图像处理:全面指南
快撑死的鱼
C++(C语言)算法大揭秘opencv图像处理人工智能
利用CUDA与OpenCV实现高效图像处理:全面指南前言在现代计算机视觉领域,图像处理的需求日益增加。无论是自动驾驶、安防监控,还是医疗影像分析,图像处理技术都扮演着至关重要的角色。然而,图像处理的计算量非常大,往往需要强大的计算能力来保证实时性和高效性。幸运的是,CUDA和OpenCV为我们提供了一种高效的图像处理解决方案。本篇文章将详细介绍如何结合CUDA与OpenCV,利用GPU的强大计算能
- linux 下 CUDA + Opencv 编程 之 CMakeLists.txt
maxruan
编程图像处理CUDAopencvlinuxc++cuda
CMAKE_MINIMUM_REQUIRED(VERSION2.8)PROJECT(medianFilterGPU)#CUDApackageFIND_PACKAGE(CUDAREQUIRED)INCLUDE(FindCUDA)#CUDAincludedirectoriesINCLUDE_DIRECTORIES(/usr/local/cuda/include)#OpenCVpackageFIND_P
- Win11及CUDA 12.1环境下PyTorch安装及避坑指南:深度学习开发者的福音
郁云爽
Win11及CUDA12.1环境下PyTorch安装及避坑指南:深度学习开发者的福音【下载地址】Win11及CUDA12.1环境下PyTorch安装及避坑指南本资源文件旨在为在Windows11操作系统及CUDA12.1环境下安装PyTorch的用户提供详细的安装步骤及常见问题解决方案。无论你是初学者还是有经验的开发者,这份指南都将帮助你顺利完成PyTorch的安装,并避免常见的坑项目地址:htt
- CUDA编程之OpenCV与CUDA结合使用
byxdaz
CUDAopencv人工智能计算机视觉
OpenCV与CUDA的结合使用可显著提升图像处理性能。一、版本匹配与环境配置CUDA与OpenCV版本兼容性OpenCV各版本对CUDA的支持存在差异,例如OpenCV4.5.4需搭配CUDA10.02,而较新的OpenCV4.8.0需使用更高版本CUDA。需注意部分模块(如级联检测器)可能因CUDA版本更新而不再支持。OpenCV版本CUDA版本4.5.x推荐CUDA11.x及以下
- Pycharm搭建CUDA,Pytorch教程(匹配版本,安装,搭建全保姆教程)_cuda12(1)
2401_84557821
程序员pycharmpytorchide
查看cuda版本输入setcuda查看环境变量如上两图即为下载成功!##二、安装Pytorch#
- jupyter notebook参数化运行python
HackerTom
乱搞pythonjupyternotebook
Updates(2019.8.1419:53)吃饭前用这个方法实战了一下,吃完回来一看好像不太行:跑完一组参数之后,到跑下一组参数时好像没有释放之占用的GPU,于是notebook上的结果,后面好几条都报错说cudaoutofmemory。现在改成:将notebook中的代码写在一个python文件中,然后用命令行运行这个文件,比如:#autorun.pyimportos#print(os.get
- win11编译llama_cpp_python cuda128 RTX30/40/50版本
System_sleep
llamapythonwindowscuda
Geforce50xx系显卡最低支持cuda128,llama_cpp_python官方源只有cpu版本,没有cuda版本,所以自己基于0.3.5版本源码编译一个RTX30xx/40xx/50xx版本。1.前置条件1.访问https://developer.download.nvidia.cn/compute/cuda/12.8.0/local_installers/cuda_12.8.0_571
- GPU编程实战指南03:CUDA开发快速上手示例,GPU性能碾压实测
anda0109
CUDA并行编程linux运维服务器
上一节《GPU编程指南02:CUDA开发快速上手示例》中我们完成了一个使用GPU进行加减乘除四则运算的例子。没有学习的可以先跳转学习这一节,因为它有详细的代码注释,学习完这一篇,你就基本入门了GPU编程。在这个例子中,我们使用GPU进行运算,同时也会用CPU进行运算,然后将两者的结果进行对比,以确保我们代码运行的结果是正确的。既然CPU可以计算,为什么要用GPU呢?因为GPU可以进行并行计算,计算
- DeepSeek R1-32B医疗大模型的完整微调实战分析(全码版)
Allen_LVyingbo
医疗高效编程研发健康医疗人工智能python
DeepSeekR1-32B微调实战指南├──1.环境准备│├──1.1硬件配置││├─全参数微调:4*A10080GB││└─LoRA微调:单卡24GB│├──1.2软件依赖││├─PyTorch2.1.2+CUDA││└─Unsloth/ColossalAI│└──1.3模型加载│├─4bit量化加载│└─FlashAttention2加速├──2.数据集构建│├──2.1数据源││├─CMD
- 记录 | python os添加系统环境变量
极智视界
pythonlinuxos系统环境变量
python中通过os来添加系统环境变量:#设置os系统环境变量os.environ['CUDA_VISIBLE_DEVICES']='0'os.environ['p2c']='1'os.environ['p2o']='0'os.environ['io']='0'#获取os系统环境变量os.getenv('CUDA_VISIBLE_DEVICES')os.getenv('p2c')...
- GPU编程实战指南01:CUDA编程极简手册
anda0109
CUDA并行编程算法
目录1.CUDA基础概念1.1线程层次结构1.2内存层次结构2.CUDA编程核心要素2.1核函数2.2内存管理2.3同步机制3.CUDA优化技巧3.1内存访问优化3.2共享内存使用3.3线程分配优化4.常见问题和解决方案5.实际案例分析1.CUDA基础概念1.1线程层次结构CUDA采用层次化的线程组织结构,从小到大依次为:线程(Thread):最基本的执行单元每个线程执行相同的核函数代码通过thr
- 安装CUDA12.1和torch2.2.1下的DKG
超级无敌大好人
python
1.创建python虚拟环境setNO_PROXY=*condadeactivatecondaenvremove-nfindkgcondacreate-nfindkgpython=3.11condaactivatefindkgcondainstallpackagingsetuptoolspipuninstallnumpycondainstallnumpy=1.24.3请注意,DKG需要python
- win11编译pytorch cuda128版本流程
System_sleep
pytorch人工智能python编译windowscuda
Geforce50xx系显卡最低支持cuda128,torchcu128release版本目前还没有释放,所以自己基于2.6.0源码自己编译wheel包。1.前置条件1.使用visualstudioinstaller安装visualstudio2022,工作负荷选择【使用c++的桌面开发】,安装完成后将“VC\Tools\MSVC\\bin\Hostx64\x64”对应的路径加入环境变量;2.访问
- 【学习笔记5】Linux下cuda、cudnn、pytorch版本对应关系
longii11
linuxpytorch运维
一、cuda和cudnnNVIDIACUDAToolkit(CUDA)为创建高性能GPU加速应用程序提供了一个开发环境。借助CUDA工具包,您可以在GPU加速的嵌入式系统、桌面工作站、企业数据中心、基于云的平台和HPC超级计算机上开发、优化和部署您的应用程序。该工具包包括GPU加速库、调试和优化工具、C/C++编译器以及用于部署应用程序的运行时库。全球的深度学习研究人员和框架开发人员都依赖cuDN
- yolov8训练模型、测试视频
灰灰学姐
深度学习神经网络YOLOpython机器学习
yolov8先训练生成best.pt文件,用这个生成的模型进行视频的测试因为本来用的代码生成的测试视频打不开,格式应该是损坏了,或者部分帧没有正常保存吧。修改了一下代码,现状可以正常打开生成的视频了。1、训练代码train.pyimportos#os.environ["CUDA_VISIBLE_DEVICES"]="3"#同样是选择第3块GPUfromultralyticsimportYOLO#L
- 解决No such file or directory: ‘:/usr/local/cuda:/usr/local/cuda:...‘
北冰洋漂流
环境配置linux服务器运维
【报错】error:[Errno2]Nosuchfileordirectory:':/usr/local/cuda:/usr/local/cuda:/usr/local/cuda:/usr/local/cuda/bin/nvcc'【解决方法】命令行输入命令exportCUDA_HOME=/usr/local/cuda重新运行安装(如pipinstall-v-e.)
- PyTorch 与 NVIDIA GPU 的适配版本及安装
小赖同学啊
人工智能pytorch人工智能python
PyTorch与NVIDIAGPU的适配版本需要通过CUDA和cuDNN来实现。以下是详细的安装教程,包括如何选择合适的PyTorch版本以及如何配置NVIDIAGPU环境。1.检查NVIDIAGPU和驱动1.1检查GPU型号确保你的机器上有NVIDIAGPU,并知道其型号。可以通过以下命令检查:nvidia-smi输出示例:+-----------------------------------
- C++使用Onnxruntime/TensorRT模型推理
奇华智能
AIc++开发语言人工智能AI计算机视觉
onnxruntime和tensorrt是我们常用的两种推理方式,下面整理了两个推理示例,仅供参考。步骤流程模型训练,python下生成pytorch的模型.pth,并基于.pth模型进行推理python下依据模型推理实现从.pth转向.onnxpython下基于.onnx进行推理,与后续两种推理方式种的推理结果进行比较环境windows10+RTX308015GB显存cuda11.3onnxru
- NCU使用指南及模型性能测试(pytorch2.5.1)
Jakari
cudagpuncupythondocker深度学习pytorch
本项目在原项目的基础上增加了NsightCompute(ncu)测试的功能,并对相关脚本功能做了一些健硕性的增强,同时,对一些框架的代码进行了更改(主要是数据集的大小和epoch等),增加模型性能测试的效率,同时完善了模型LSTM的有关功能。OverviewNsightCompute(NCU)是NVIDIA提供的GPU内核级性能分析工具,专注于CUDA程序的优化。它提供详细的计算资源、内存带宽、指
- 高性能计算中如何优化内存管理?
gpu
在高性能计算(HPC)中,优化内存管理是提升计算性能的关键环节之一。以下是一些常见的优化策略和方法:内存分配与管理策略内存池技术:通过预分配一定大小的内存池,避免频繁的内存分配和释放操作,减少内存碎片化。例如,在CUDA编程中,可以使用内存池来管理GPU内存,从而提高内存访问效率。异构内存管理:在异构计算环境中(如CPU+GPU),采用统一内存管理(UnifiedMemory)或智能数据迁移策略,
- 图像识别技术与应用课后总结(12)
一元钱面包
人工智能
全局平均池化(GlobalAveragePooling)1.导入库和设备配置importtorch.nnasnnimporttorch.nn.functionalasFdevice=torch.device("cuda:0"iftorch.cuda.is_available()else"cpu")-importtorch.nnasnn:导入PyTorch的神经网络模块,用于构建神经网络层。-imp
- RuntimeError: CUDA error:device.side assert triggered(tensor形状有误)
Gidear
cuda
报错如下:RuntimeError:CUDAerror:device.sideasserttriggeredCUDAkernelerrorsmightbeasynchronouslyreportedatsomeotherAPIcall,sothestacktracebelowmightbeincorrect.后面经过检查发现,是进行计算的时候维度弄错了,下次遇到这个问题可以试着回去检查数据形状是否
- 莫名奇妙的异常009:mysql row size too large>8126
杨友山
异常
表中的varchar和text(longtext)字段太多,超出mysql的默认RowSize8k的限制。一般建议拆表,一个表不要太多列,列的内容不要太长。临时解决可以这样:1.设置mysql全局变量设置命令:SETGLOBALinnodb_file_format='Barracuda';检查命令:showGLOBALVARIABLESLIKE'%file_format%';步骤一一般数据库都有这
- mysql row size too large_mysql 错误 Row size too large (> 8126)解决办法
譃七唯
mysqlrowsizetoolarge
这个错误比较诡异,有很多问题会引发这个错误,主要问题大表中varchar和text(longtext)字段太多,超出mysql的默认RowSize8k的限制。如果涉及的表没有事务和外键的约束,可以把表类型改为MyISAM也可以解决。下面的方法针对表类型为InnoDB的方法。基础设置:innodb_file_per_table=1innodb_file_format=Barracuda如果解决不了,
- 使用pytorch和opencv根据颜色相似性提取图像
深蓝海拓
机器视觉和人工智能学习opencv学习笔记pytorchopencv人工智能
需求:将下图中的花朵提取出来。代码:importcv2importtorchimportnumpyasnpimporttimedefget_similar_colors(image,color_list,threshold):#将图像和颜色列表转换为torch张量device=torch.device('cuda'iftorch.cuda.is_available()else'cpu')image
- 分布式多卡训练(DDP)踩坑
m0_54804970
面试学习路线阿里巴巴分布式
多卡训练最近在跑yolov10版本的RT-DETR,用来进行目标检测。单卡训练语句(正常运行):pythonmain.py多卡训练语句:需要通过torch.distributed.launch来启动,一般是单节点,其中CUDA_VISIBLE_DEVICES设置用的显卡编号,也可以不用,直接在main.py里面指定device也行,–nproc_pre_node每个节点的显卡数量。python-m
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/pwd@192.168.0.5:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理