基于遗传算法GA算法优化BP神经网络(Python代码实现)

 欢迎来到本博客❤️❤️❤️

博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

目录

1 概述

2 运行结果

3 参考文献

4 Python代码实现


1 概述

    BP-GA算法的设计︰基于遗传算法的BP神经网络算法(以下简称BP-GA)就是在BP神经网络的学习过程中,将权重和阀值描述为染色体,并选取适宜的适应函数,然后进行GA迭代,直到某种意义上的收敛.与普通BP学习算法相比,算法 BP一GA的优势在于可以处理一些传统方法不能处理的例子,例如不可导的特性函数(传递函数)或者没有梯度信息存在的节点.该算法涉及到两个关键问题,分别是染色体位串与权系值的编码映射和评价函数。

2 运行结果

部分代码:

def load_data_wrapper(filename):
    lineData = []
    with open(filename) as txtData:
        lines = txtData.readlines()
        for line in lines:
            linedata = line.strip().split(',')
            lineData.append(linedata)
    return lineData
# 提出特征和标签,特征做输入,标签为输出
def splitData(dataset):
    Character= []
    Label = []
    for i in range(len(dataset)):
        Character.append([float(tk) for tk in dataset[i][1:-1]])
        Label.append(float(dataset[i][-1]))
    return Character, Label
#输入特征数据归一化
def max_min_norm_x(dataset):
    min_data = []
    for i in range(len(dataset)):
        min_data.append(min(dataset[i]))
    new_min = min(min_data)
    max_data = []
    for i in range(len(dataset)):
        max_data.append(max(dataset[i]))
    new_max = max(max_data)
    data = np.array(dataset)
    data_x =[]
    for x in np.nditer(data, op_flags=['readwrite']):
        #x[...] = 2 * (x -new_min)/(new_max-new_min)-1
        x[...] = (x - new_min) / (new_max - new_min)
        #print('x[...]:',x[...])
        data_x.append(x[...])
    data_x3 = []
    for index in range(0, len(data_x), 3):
        data_x3.append([data_x[index], data_x[index+1], data_x[index+2]])
    #print("data_x3:",data_x3)
    return data_x3
def load_data_wrapper(filename):
    lineData = []
    with open(filename) as txtData:
        lines = txtData.readlines()
        for line in lines:
            linedata = line.strip().split(',')
            lineData.append(linedata)
    return lineData
# 提出特征和标签,特征做输入,标签为输出
def splitData(dataset):
    Character= []
    Label = []
    for i in range(len(dataset)):
        Character.append([float(tk) for tk in dataset[i][1:-1]])
        Label.append(float(dataset[i][-1]))
    return Character, Label
#输入特征数据归一化
def max_min_norm_x(dataset):
    min_data = []
    for i in range(len(dataset)):
        min_data.append(min(dataset[i]))
    new_min = min(min_data)
    max_data = []
    for i in range(len(dataset)):
        max_data.append(max(dataset[i]))
    new_max = max(max_data)
    data = np.array(dataset)
    data_x =[]
    for x in np.nditer(data, op_flags=['readwrite']):
        #x[...] = 2 * (x -new_min)/(new_max-new_min)-1
        x[...] = (x - new_min) / (new_max - new_min)
        #print('x[...]:',x[...])
        data_x.append(x[...])
    data_x3 = []
    for index in range(0, len(data_x), 3):
        data_x3.append([data_x[index], data_x[index+1], data_x[index+2]])
    #print("data_x3:",data_x3)
    return data_x3

3 参考文献

[1]王崇骏,于汶滌,陈兆乾,谢俊元.一种基于遗传算法的BP神经网络算法及其应用[J].南京大学学报:自然科学版,2003,39(5):459-466

[2]潘昊,王晓勇,陈琼,黄少銮.基于遗传算法的BP神经网络技术的应用[J].计算机应用,2005,25(12):2777-2779

4 Python代码实现

你可能感兴趣的:(神经网络预测,python,算法,神经网络)