人工智能实践:Tensorflow笔记(4)——网络八股扩展

文章目录

  • 1、tf.keras搭建神经网络八股
  • 2、自制数据集
  • 3、数据增强
  • 4、断点续训
  • 5、参数提取
  • 6、acc&loss可视化
  • 7、给图识物

1、tf.keras搭建神经网络八股

六步法

import
train,test
Sequential/Class
model.compile
model.fit
model.summary

神经网络训练的目的,就是获取各层网络最优的参数

  1. 自制数据集,解决本领域问题
  2. 数据增强,扩充数据集
  3. 断点续训,存取模型
  4. 参数提取,把参数存入文本
  5. acc/loss可视化,查看训练效果
  6. 应用程序,给图识物

2、自制数据集

观察数据集数据结构,给x_train、y_train、x_test、y_test赋值
人工智能实践:Tensorflow笔记(4)——网络八股扩展_第1张图片
黑底白字的灰度图,每张图有28行28列个像素点,每个像素点都是0到255之间的整数,纯黑色用数值0表示,纯白色用数值255表示
人工智能实践:Tensorflow笔记(4)——网络八股扩展_第2张图片
人工智能实践:Tensorflow笔记(4)——网络八股扩展_第3张图片

def generateds(图片路径,标签文件)

把图片路径作为第一参数,标签文件作为第二参数
目标:把图片路径和标签文件输入genrateds()函数

拿到本地数据集,首先要观察数据集的结构,txt文件中有两列,第一列是图片名,第二列是对应的标签,value[0]这一列用于索引到每张图片,value[1]为每张图片对应的标签,只需把图片灰度值数据拼接到图片列表,把标签数据拼接到标签列表,顺序一致就OK

def generateds(path,txt):
    f = open(txt,'r')			#以只读形式打开txt文件
    contents = f.readlines()		#读取文件中所有行
    f.close()				#关闭txt文件
    x,y_ = [],[]			#建立空列表x,y_
    for content in contents:		#逐行读出
        value = content.split()		#以空格分开
        img_path = path + value[0]
        img = Image.open(img_path)	#读入图片
        img = np.array(img.convert('L'))	#图片变为8位宽度的灰度值
        img = img / 255.		#数据归一化
        x.append(img)
        y_.append(value[1])
        print('loading : ' + content)
    
    x = np.array(x)
    y_ = np.array(y_)
    y_ = y_.astype(np.int64)
    return x,y_

import tensorflow as tf
from PIL import Image
import numpy as np
import os

train_path = './mnist_image_label/mnist_train_jpg_60000/'
train_txt = './mnist_image_label/mnist_train_jpg_60000.txt'
x_train_savepath = './mnist_image_label/mnist_x_train.npy'
y_train_savepath = './mnist_image_label/mnist_y_train.npy'

test_path = './mnist_image_label/mnist_test_jpg_10000/'
test_txt = './mnist_image_label/mnist_test_jpg_10000.txt'
x_test_savepath = './mnist_image_label/mnist_x_test.npy'
y_test_savepath = './mnist_image_label/mnist_y_test.npy'


def generateds(path, txt):
    f = open(txt, 'r')  # 以只读形式打开txt文件
    contents = f.readlines()  # 读取文件中所有行
    f.close()  # 关闭txt文件
    x, y_ = [], []  # 建立空列表
    for content in contents:  # 逐行取出
        value = content.split()  # 以空格分开,图片路径为value[0] , 标签为value[1] , 存入列表
        img_path = path + value[0]  # 拼出图片路径和文件名
        img = Image.open(img_path)  # 读入图片
        img = np.array(img.convert('L'))  # 图片变为8位宽灰度值的np.array格式
        img = img / 255.  # 数据归一化 (实现预处理)
        x.append(img)  # 归一化后的数据,贴到列表x
        y_.append(value[1])  # 标签贴到列表y_
        print('loading : ' + content)  # 打印状态提示

    x = np.array(x)  # 变为np.array格式
    y_ = np.array(y_)  # 变为np.array格式
    y_ = y_.astype(np.int64)  # 变为64位整型
    return x, y_  # 返回输入特征x,返回标签y_


if os.path.exists(x_train_savepath) and os.path.exists(y_train_savepath) and os.path.exists(
        x_test_savepath) and os.path.exists(y_test_savepath):
    print('-------------Load Datasets-----------------')
    x_train_save = np.load(x_train_savepath)
    y_train = np.load(y_train_savepath)
    x_test_save = np.load(x_test_savepath)
    y_test = np.load(y_test_savepath)
    x_train = np.reshape(x_train_save, (len(x_train_save), 28, 28))
    x_test = np.reshape(x_test_save, (len(x_test_save), 28, 28))
else:
    print('-------------Generate Datasets-----------------')
    x_train, y_train = generateds(train_path, train_txt)
    x_test, y_test = generateds(test_path, test_txt)

    print('-------------Save Datasets-----------------')
    x_train_save = np.reshape(x_train, (len(x_train), -1))
    x_test_save = np.reshape(x_test, (len(x_test), -1))
    np.save(x_train_savepath, x_train_save)
    np.save(y_train_savepath, y_train)
    np.save(x_test_savepath, x_test_save)
    np.save(y_test_savepath, y_test)

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
model.summary()

3、数据增强

数据增强可以帮助扩展数据集,对图像的增强就是对图像的简单形变,用来应对因拍照角度不同引起的图片变形
数据增强(增大数据集)

image_gen_train = tf.keras.preprocessing.image.ImageDataGenerator(
        rescale =  所有数据将乘以该数值			#对输入特征大小进行调整
        rotation_range = 随机旋转角度数范围		#对图像进行角度的随机旋转
        width_shift_range = 随机宽度偏移量		#对图像进行随机宽度偏移
        height_shift_range = 随机高度偏移量		#对图像进行随机高度偏移
        水平翻转: horizontal_flip = 是否随机水平翻转
        随机缩放:zoom_range = 随机缩放的范围[1-n,1+n])	#选择按照什么比例随机缩小放大图片
image_gen_train.fit(x_train)

例:

image_gen_train = ImageDataGenerator(
    rescale = 1. / 1.,		#如为图像,分母为255时,可归至0~1
    rotation_range = 45,	#随机45度旋转
    width_shift_range = .15,	#宽度偏移
    height_shift_range = .15,	#高度偏移
    horizontal_flip = False,	#水平翻转
    zoom_range = 0.5		#将图像随机缩放阈量50%)
image_gen_train.fit(x_train)

image_gen_train.fit(x_train)这里的fit需要输入一个四维数据,所以要对x_train进行reshape,把60000张28行28列数据,变为60000张28行28列单通道数据,这个单通道为灰度值
model.fit同步更新为.flow形式,把训练集输入特征x_train、训练集标签y_train,按照batch打包送入model.fit执行训练过程

import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)  # 给数据增加一个维度,从(60000, 28, 28)reshape为(60000, 28, 28, 1)

image_gen_train = ImageDataGenerator(
    rescale=1. / 1.,  # 如为图像,分母为255时,可归至0~1
    rotation_range=45,  # 随机45度旋转
    width_shift_range=.15,  # 宽度偏移
    height_shift_range=.15,  # 高度偏移
    horizontal_flip=False,  # 水平翻转
    zoom_range=0.5  # 将图像随机缩放阈量50%
)
image_gen_train.fit(x_train)

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(image_gen_train.flow(x_train, y_train, batch_size=32), epochs=5, validation_data=(x_test, y_test),
          validation_freq=1)
model.summary()
from tensorflow.keras.utils import get_file
import gzip
import numpy as np

def load_data():
    base = "file:///D:/AI/class3/"
    files = ['train-labels-idx1-ubyte.gz','train-images-idx3-ubyte.gz',
             't10k-labels-idx1-ubyte.gz','t10k-images-idx3-ubyte.gz'
             ]

    paths = []
    for fname in files:
        paths.append(get_file(fname,origin = base + fname))

    with gzip.open(paths[0], 'rb') as lbpath:
        y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)

    with gzip.open(paths[1], 'rb') as imgpath:
        x_train = np.frombuffer(
            imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28)

    with gzip.open(paths[2], 'rb') as lbpath:
        y_test = np.frombuffer(lbpath.read(), np.uint8, offset=8)

    with gzip.open(paths[3], 'rb') as imgpath:
        x_test = np.frombuffer(
            imgpath.read(), np.uint8, offset=16).reshape(len(y_test), 28, 28)

    return (x_train, y_train), (x_test, y_test)


import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import LoadData

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = LoadData.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)  # 给数据增加一个维度,从(60000, 28, 28)reshape为(60000, 28, 28, 1)

image_gen_train = ImageDataGenerator(
    rescale=1. / 1.,  # 如为图像,分母为255时,可归至0~1
    rotation_range=45,  # 随机45度旋转
    width_shift_range=.15,  # 宽度偏移
    height_shift_range=.15,  # 高度偏移
    horizontal_flip=False,  # 水平翻转
    zoom_range=0.5  # 将图像随机缩放阈量50%
)
image_gen_train.fit(x_train)

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(image_gen_train.flow(x_train, y_train, batch_size=32), epochs=5, validation_data=(x_test, y_test),
          validation_freq=1)
model.summary()

随着模型迭代轮数的增加,模型准确率不断提高,数据增强在小数据量上,可以增加模型泛化性,在实际应用模型时能体现出效果

4、断点续训

断点续训可以存取模型
读取模型:

load_weights(路径文件名)

checkpoint_save_path = "./checkpoint/mnist.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('----------load the model----------')
    model.load_weights(checkpoint_save_path)

保存模型:(使用TensorFlow给出的回调函数)

tf.keras.callbacks.ModelCheckpoint(
    filepath = 路径文件名,
    save_weights_only = True/False,		#是否只保留模型参数
    save_best_only = True/False)		#是否只保留最优结果
history = model.fit(callbacks[cp_callback])	#加入callbacks选项

cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath = checkpoint_save_path,
                                                 save_weights_only = True,
                                                 save_best_only = True)
history = model.fit(x_train,y_train,batch_size = 32,epochs = 5,
                    validation_data = (x_test,y_test),validation_freq = 1,
                    callbacks = [cp_callback])
import tensorflow as tf
import os

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

checkpoint_save_path = "./checkpoint/mnist.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('-------------load the model-----------------')
    model.load_weights(checkpoint_save_path)

cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                 save_weights_only=True,
                                                 save_best_only=True)

history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                    callbacks=[cp_callback])
model.summary()

在训练过程中出现了checkpoint文件夹,里面存放模型的参数,再次运行,这次运行的准确率是在刚刚保存模型的基础上继续提升的

5、参数提取

把参数存入文本

提取可训练参数
model.trainable_variables返回模型中可训练的参数
设置print输出格式
np.set_printoptions(threshold=超过多少省略显示)

np.set_printoptions(threshold=np.inf)		#np.inf表示无限大

print(model.trainable_variables)
file = open('./weights.txt''w')
for v in model.trainable_variables:
    file.write(str(v.name) + '\n')
    file.write(str(v.shape) + '\n')
    file.write(str(v.numpy()) + '\n')
file.close()

在断点续训的基础上加入了参数提取功能

import tensorflow as tf
import os
import numpy as np
np.set_printoptions(threshold=np.inf)
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])
checkpoint_save_path = "./checkpoint/mnist.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('-------------load the model-----------------')
    model.load_weights(checkpoint_save_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                 save_weights_only=True,
                                                 save_best_only=True)
history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                    callbacks=[cp_callback])
model.summary()
print(model.trainable_variables)
file = open('./weights.txt', 'w')
for v in model.trainable_variables:
    file.write(str(v.name) + '\n')
    file.write(str(v.shape) + '\n')
    file.write(str(v.numpy()) + '\n')
file.close()

6、acc&loss可视化

acc曲线与loss曲线

history = model.fit(训练集数据,训练集标签,batch_size=,epochs=,validation_split=用作测试数据的比例,validation_data=测试集,validation_freq=测试频率)
history:
训练集loss:loss
测试集loss:val_loss
训练集准确率:sparse_categorical_accuracy
测试集准确率:val_sparse_categorical_accuracy

acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
#显示训练集和验证集的acc和loss曲线
acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']

plt.subplot(1,2,1)
plt.plot(acc,label='Training Accuracy')
plt.plot(val_acc,label='Validation Accuracy')
plt.title('Training and Vaildation Accuracy')
plt.legend()

plt.subplot(1,2,2)
plt.plot(loss,label='Training Loss')
plt.plot(val_loss,label='Vaildation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()

在断点续训和参数提取代码的基础上,加入了画图模块plt和几行画图程序

import tensorflow as tf
import os
import numpy as np
from matplotlib import pyplot as plt

np.set_printoptions(threshold=np.inf)

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

checkpoint_save_path = "./checkpoint/mnist.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('-------------load the model-----------------')
    model.load_weights(checkpoint_save_path)

cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                 save_weights_only=True,
                                                 save_best_only=True)

history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                    callbacks=[cp_callback])
model.summary()

print(model.trainable_variables)
file = open('./weights.txt', 'w')
for v in model.trainable_variables:
    file.write(str(v.name) + '\n')
    file.write(str(v.shape) + '\n')
    file.write(str(v.numpy()) + '\n')
file.close()

###############################################    show   ###############################################

# 显示训练集和验证集的acc和loss曲线
acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']

plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()

plt.subplot(1, 2, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()

7、给图识物

前向传播执行应用

predict(输入特征,batch_size=整数)
返回前向传播计算结果
#复现模型(前向传播)
model = tf.keras.models.Sequential([
      tf.keras.layers.Flatten(),
      tf.keras.layers.Dense(128,activation='relu'),
      tf.keras.layers.Dense(10,activation='softmax')])

#加载参数
model.load_weights(model_save_path)

#预测结果
result = model.predict(x_predict)
from PIL import Image
import numpy as np
import tensorflow as tf

model_save_path = './checkpoint/mnist.ckpt'

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')])
    
model.load_weights(model_save_path)

preNum = int(input("input the number of test pictures:"))

for i in range(preNum):
    image_path = input("the path of test picture:")
    img = Image.open(image_path)
    img = img.resize((28, 28), Image.ANTIALIAS)
    img_arr = np.array(img.convert('L'))

    img_arr = 255 - img_arr
                
    img_arr = img_arr / 255.0
    print("img_arr:",img_arr.shape)
    x_predict = img_arr[tf.newaxis, ...]
    print("x_predict:",x_predict.shape)
    result = model.predict(x_predict)
    
    pred = tf.argmax(result, axis=1)
    
    print('\n')
    tf.print(pred)
from PIL import Image
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

model_save_path = './checkpoint/mnist.ckpt'
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.load_weights(model_save_path)
preNum = int(input("input the number of test pictures:"))

for i in range(preNum):
    image_path = input("the path of test picture:")
    img = Image.open(image_path)

    image = plt.imread(image_path)
    plt.set_cmap('gray')
    plt.imshow(image)

    img = img.resize((28, 28), Image.ANTIALIAS)
    img_arr = np.array(img.convert('L'))

    for i in range(28):
        for j in range(28):
            if img_arr[i][j] < 200:
                img_arr[i][j] = 255
            else:
                img_arr[i][j] = 0

    img_arr = img_arr / 255.0
    x_predict = img_arr[tf.newaxis, ...]
    result = model.predict(x_predict)
    pred = tf.argmax(result, axis=1)

    print('\n')
    tf.print(pred)

    plt.pause(1)
    plt.close()

你可能感兴趣的:(人工智能,tensorflow,人工智能,网络)