许多新型电子计算机不仅拥有高速的计算功能,而且还能模拟人脑的某种思维活动,就是说,拥有某些智能化的功能。然后,如果严格来鉴定一下,它们离真正的人脑思维功能实在差得太远了,而且有许多本质的差异。
主要表现在人脑拥有高度的自我学习和联想、创造的能力,以及更高级的寻找最优方案和各种理性的、情感的功能。
神经网络计算机就是通过人工神经网络,模仿人的大脑判断能力和适应能力、可并行处理多种数据功能的计算机。它可以判断对象的性质与状态,并能采取相应的行动,而且可同时并行处理实时变化的大量数据,并引出结论。
生物的神经网络是通过树突和轴突连接起来的神经元的网络。神经信号在神经元之间传递,帮助人产生思考和记忆。人工神经网络是一种模仿生物神经网络而建立的运算模型,由大量的节点(或称神经元)之间相互联接构成。
每个节点代表一种特定的输出函数,称为激励函数。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。
网络的输出依照网络的连接方式、权重值和激励函数的不同而不同。而网络自身通常都是对自然界的某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。
生物神经网络(左)、人工神经网络(右)与生物神经网络相似,人工神经网络也可以通过训练提高自身判断和处理的性能。
其原理是向该神经网络输入足够多的样本,通过一定的算法来调整网络的结构,即权重值,使得网络的输出与预期值相符。经过训练的神经网络可以像人脑那样进行判断和预测,并且能同时接受几种信号并进行处理。
譬如,它能去辨别一个签名的真伪。它不是凭签名的图像是否相像来判断,而是根据本人在签名时,笔尖上的压力随时间的变化以及移动的速度来判断。
目前,神经网络计算机的主要用途是识别各种极其细微的变化和趋势,并发出信号。它已经被用来控制热核聚变反应、监督机器的运行、挑选苹果,甚至预测股市行情。
谷歌人工智能写作项目:神经网络伪原创
生物神经网络主要是指人脑的神经网络,它是人工神经网络的技术原型好文案。
人脑是人类思维的物质基础,思维的功能定位在大脑皮层,后者含有大约10^11个神经元,每个神经元又通过神经突触与大约103个其它神经元相连,形成一个高度复杂高度灵活的动态网络。
作为一门学科,生物神经网络主要研究人脑神经网络的结构、功能及其工作机制,意在探索人脑思维和智能活动的规律。
人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。
因此,生物神经网络主要研究智能的机理;人工神经网络主要研究智能机理的实现,两者相辅相成。
神经网络计算机具有模仿人的大脑判断能力和适应能力,可并行处理多种数据功能的神经网络计算机,可以判断对象的性质与状态,并能采取相应的行动,而且可同时并行处理实时变化的大量数据,并引出结论。
以往的信息处理系统只能处理条理清晰、经络分明的数据。而人的大脑却具有能处理支离破碎、含糊不清信息的灵活性,因而第六代计算机将在较大程度上类似人脑的智慧和灵活性。
人脑有140亿神经元及10亿多神经键,人脑总体运行速度相当于每秒1000万亿次的电脑功能。用许多微处理机模仿人脑的神经元结构,采用大量的并行分布式网络就构成了神经电脑。
神经电脑除有许多处理器外,还有类似神经的节点,每个节点与许多点相连。若把每一步运算分配给每台微处理器,它们同时运算,其信息处理速度和智能会大大提高。
神经电子计算机的信息不是存在存储器中,而是存储在神经元之间的联络网中。若有节点断裂,电脑仍有重建资料的能力,它还具有联想记忆、视觉和声音识别能力。神经电子计算机将会广泛应用于各领域。
它能识别文字、符号、图形、语言以及声纳和雷达收到的信号,判读支票,对市场进行估计,分析新产品,进行医学诊断,控制智能机器人,实现汽车自动驾驶和飞行器的自动驾驶,发现、识别军事目标,进行智能决策和智能指挥等。
日本科学家开发的神经电子计算机用的大规模集成电路芯片,在1.5厘米正方的硅片上可设置400个神经元和40000个神经键,这种芯片能实现每秒2亿次的运算速度。
美国研究出由左脑和右脑两个神经块连接而成的神经电子计算机。右脑为经验功能部分,有1万多个神经元,适于图像识别;左脑为识别功能部分,含有100万个神经元,用于存储单词和语法规则。
神经网络算法是由多个神经元组成的算法网络。
逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。
然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生的想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1、信息是通过神经元上的兴奋模式分布储在网络上。
2、信息处理是通过神经元之间同时相互作用的动态过程来完成的。思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。
沃伦·麦卡洛克和沃尔特·皮茨(1943)基于数学和一种称为阈值逻辑的算法创造了一种神经网络的计算模型。这种模型使得神经网络的研究分裂为两种不同研究思路。
一种主要关注大脑中的生物学过程,另一种主要关注神经网络在人工智能里的应用。一、赫布型学习二十世纪40年代后期,心理学家唐纳德·赫布根据神经可塑性的机制创造了一种对学习的假说,现在称作赫布型学习。
赫布型学习被认为是一种典型的非监督式学习规则,它后来的变种是长期增强作用的早期模型。从1948年开始,研究人员将这种计算模型的思想应用到B型图灵机上。
法利和韦斯利·A·克拉克(1954)首次使用计算机,当时称作计算器,在MIT模拟了一个赫布网络。纳撒尼尔·罗切斯特(1956)等人模拟了一台 IBM 704计算机上的抽象神经网络的行为。
弗兰克·罗森布拉特创造了感知机。这是一种模式识别算法,用简单的加减法实现了两层的计算机学习网络。罗森布拉特也用数学符号描述了基本感知机里没有的回路,例如异或回路。
这种回路一直无法被神经网络处理,直到保罗·韦伯斯(1975)创造了反向传播算法。在马文·明斯基和西摩尔·派普特(1969)发表了一项关于机器学习的研究以后,神经网络的研究停滞不前。
他们发现了神经网络的两个关键问题。第一是基本感知机无法处理异或回路。第二个重要的问题是电脑没有足够的能力来处理大型神经网络所需要的很长的计算时间。
直到计算机具有更强的计算能力之前,神经网络的研究进展缓慢。二、反向传播算法与复兴后来出现的一个关键的进展是保罗·韦伯斯发明的反向传播算法(Werbos 1975)。
这个算法有效地解决了异或的问题,还有更普遍的训练多层神经网络的问题。在二十世纪80年代中期,分布式并行处理(当时称作联结主义)流行起来。
戴维·鲁姆哈特和詹姆斯·麦克里兰德的教材对于联结主义在计算机模拟神经活动中的应用提供了全面的论述。神经网络传统上被认为是大脑中的神经活动的简化模型,虽然这个模型和大脑的生理结构之间的关联存在争议。
人们不清楚人工神经网络能多大程度地反映大脑的功能。
支持向量机和其他更简单的方法(例如线性分类器)在机器学习领域的流行度逐渐超过了神经网络,但是在2000年代后期出现的深度学习重新激发了人们对神经网络的兴趣。
三、2006年之后的进展人们用CMOS创造了用于生物物理模拟和神经形态计算的计算设备。最新的研究显示了用于大型主成分分析和卷积神经网络的纳米设备具有良好的前景。
如果成功的话,这会创造出一种新的神经计算设备,因为它依赖于学习而不是编程,并且它从根本上就是模拟的而不是数字化的,虽然它的第一个实例可能是数字化的CMOS设备。
在2009到2012年之间,Jürgen Schmidhuber在Swiss AI Lab IDSIA的研究小组研发的循环神经网络和深前馈神经网络赢得了8项关于模式识别和机器学习的国际比赛。
例如,Alex Graves et al.的双向、多维的LSTM赢得了2009年ICDAR的3项关于连笔字识别的比赛,而且之前并不知道关于将要学习的3种语言的信息。
IDSIA的Dan Ciresan和同事根据这个方法编写的基于GPU的实现赢得了多项模式识别的比赛,包括IJCNN 2011交通标志识别比赛等等。
他们的神经网络也是第一个在重要的基准测试中(例如IJCNN 2012交通标志识别和NYU的扬·勒丘恩(Yann LeCun)的MNIST手写数字问题)能达到或超过人类水平的人工模式识别器。
类似1980年Kunihiko Fukushima发明的neocognitron和视觉标准结构(由David H. Hubel和Torsten Wiesel在初级视皮层中发现的那些简单而又复杂的细胞启发)那样有深度的、高度非线性的神经结构可以被多伦多大学杰弗里·辛顿实验室的非监督式学习方法所训练。
2012年,神经网络出现了快速的发展,主要原因在于计算技术的提高,使得很多复杂的运算变得成本低廉。以AlexNet为标志,大量的深度网络开始出现。
2014年出现了残差神经网络,该网络极大解放了神经网络的深度限制,出现了深度学习的概念。
构成典型的人工神经网络具有以下三个部分:1、结构(Architecture)结构指定了网络中的变量和它们的拓扑关系。
例如,神经网络中的变量可以是神经元连接的权重(weights)和神经元的激励值(activities of the neurons)。
2、激励函数(Activation Rule)大部分神经网络模型具有一个短时间尺度的动力学规则,来定义神经元如何根据其他神经元的活动来改变自己的激励值。
一般激励函数依赖于网络中的权重(即该网络的参数)。3、学习规则(Learning Rule)学习规则指定了网络中的权重如何随着时间推进而调整。这一般被看做是一种长时间尺度的动力学规则。
一般情况下,学习规则依赖于神经元的激励值。它也可能依赖于监督者提供的目标值和当前权重的值。例如,用于手写识别的一个神经网络,有一组输入神经元。输入神经元会被输入图像的数据所激发。
在激励值被加权并通过一个函数(由网络的设计者确定)后,这些神经元的激励值被传递到其他神经元。这个过程不断重复,直到输出神经元被激发。最后,输出神经元的激励值决定了识别出来的是哪个字母。
神经网络算法的三大类分别是:1、前馈神经网络:这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。如果有多个隐藏层,我们称之为“深度”神经网络。他们计算出一系列改变样本相似性的变换。
各层神经元的活动是前一层活动的非线性函数。2、循环网络:循环网络在他们的连接图中定向了循环,这意味着你可以按照箭头回到你开始的地方。他们可以有复杂的动态,使其很难训练。他们更具有生物真实性。
循环网络的目的是用来处理序列数据。在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题却无能无力。
循环神经网路,即一个序列当前的输出与前面的输出也有关。
具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。
3、对称连接网络:对称连接网络有点像循环网络,但是单元之间的连接是对称的(它们在两个方向上权重相同)。比起循环网络,对称连接网络更容易分析。这个网络中有更多的限制,因为它们遵守能量函数定律。
没有隐藏单元的对称连接网络被称为“Hopfield 网络”。有隐藏单元的对称连接的网络被称为玻尔兹曼机。
扩展资料:应用及发展:心理学家和认知科学家研究神经网络的目的在于探索人脑加工、储存和搜索信息的机制,弄清人脑功能的机理,建立人类认知过程的微结构理论。
生物学、医学、脑科学专家试图通过神经网络的研究推动脑科学向定量、精确和理论化体系发展,同时也寄希望于临床医学的新突破;信息处理和计算机科学家研究这一问题的目的在于寻求新的途径以解决不能解决或解决起来有极大困难的大量问题,构造更加逼近人脑功能的新一代计算机。
神经网络原理及应用1. 什么是神经网络?神经网络是一种模拟动物神经网络行为特征,进行分布式并行信息处理的算法。
这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
人类的神经网络2. 神经网络基础知识构成:大量简单的基础元件——神经元相互连接工作原理:模拟生物的神经处理信息的方式功能:进行信息的并行处理和非线性转化特点:比较轻松地实现非线性映射过程,具有大规模的计算能力神经网络的本质:神经网络的本质就是利用计算机语言模拟人类大脑做决定的过程。
3. 生物神经元结构4. 神经元结构模型xj为输入信号,θi为阈值,wij表示与神经元连接的权值,yi表示输出值判断xjwij是否大于阈值θi5. 什么是阈值?
临界值。神经网络是模仿大脑的神经元,当外界刺激达到一定的阈值时,神经元才会受刺激,影响下一个神经元。
6. 几种代表性的网络模型单层前向神经网络——线性网络阶跃网络多层前向神经网络(反推学习规则即BP神经网络)Elman网络、Hopfield网络、双向联想记忆网络、自组织竞争网络等等7. 神经网络能干什么?
运用这些网络模型可实现函数逼近、数据聚类、模式分类、优化计算等功能。因此,神经网络广泛应用于人工智能、自动控制、机器人、统计学等领域的信息处理中。
虽然神经网络的应用很广,但是在具体的使用过程中到底应当选择哪种网络结构比较合适是值得考虑的。这就需要我们对各种神经网络结构有一个较全面的认识。8. 神经网络应用。
神经网络计算机具有模仿人的大脑判断能力和适应能力,可并行处理多种数据功能的神经网络计算机,可以判断对象的性质与状态,并能采取相应的行动,而且可同时并行处理实时变化的大量数据,并引出结论。
以往的信息处理系统只能处理条理清晰、经络分明的数据。而人的大脑却具有能处理支离破碎、含糊不清信息的灵活性,因而第六代计算机将在较大程度上类似人脑的智慧和灵活性。
人脑有140亿神经元及10亿多神经键,人脑总体运行速度相当于每秒1000万亿次的电脑功能。用许多微处理机模仿人脑的神经元结构,采用大量的并行分布式网络就构成了神经电脑。
神经电脑除有许多处理器外,还有类似神经的节点,每个节点与许多点相连。若把每一步运算分配给每台微处理器,它们同时运算,其信息处理速度和智能会大大提高。
神经电子计算机的信息不是存在存储器中,而是存储在神经元之间的联络网中。若有节点断裂,电脑仍有重建资料的能力,它还具有联想记忆、视觉和声音识别能力。神经电子计算机将会广泛应用于各领域。
它能识别文字、符号、图形、语言以及声纳和雷达收到的信号,判读支票,对市场进行估计,分析新产品,进行医学诊断,控制智能机器人,实现汽车自动驾驶和飞行器的自动驾驶,发现、识别军事目标,进行智能决策和智能指挥等。
日本科学家开发的神经电子计算机用的大规模集成电路芯片,在1.5厘米正方的硅片上可设置400个神经元和40000个神经键,这种芯片能实现每秒2亿次的运算速度。
美国研究出由左脑和右脑两个神经块连接而成的神经电子计算机。右脑为经验功能部分,有1万多个神经元,适于图像识别;左脑为识别功能部分,含有100万个神经元,用于存储单词和语法规则。