- 016.3月夏令营:数理类
力学AI有限元
保研
016.3月夏令营:数理类:中国人民大学统计学院:http://www.eeban.com/forum.php?mod=viewthread&tid=386109北京大学化学学院第一轮:http://www.eeban.com/forum.php?m...6026&extra=page%3D1香港大学化学系夏令营:http://www.eeban.com/forum.php?mod=viewthr
- 机器学习基础(4)
yyc_audio
深度学习python机器学习神经网络人工智能
超越基于常识的基准除了不同的评估方法,还应该利用基于常识的基准。训练深度学习模型就好比在平行世界里按下发射火箭的按钮,你听不到也看不到。你无法观察流形学习过程,它发生在数千维空间中,即使投影到三维空间中,你也无法解释它。唯一的反馈信号就是验证指标,就像隐形火箭的高度计。特别重要的是,我们需要知道火箭是否离开了地面。发射地点的海拔高度是多少?模型似乎有15%的精度——这算是很好吗?在开始处理一个数据
- elasticsearch聚合查询
warrah
岁月云——大数据杂烩elasticsearch大数据
9聚合后再过滤查询汇总后多条件过滤超过100万的数据POSTzzp_invoice/_search{"size":0,"query":{"range":{"SSYF":{"gte":"202101","lte":"202112"}}},"aggs":{"ssyf_group":{"terms":{"field":"XHDWMC.raw"},"aggs":{"sum_aggs":{"sum":{"f
- 机器学习|决策树|Gini指数和熵的区别|简单示例
漂亮_大男孩
机器学习决策树人工智能
如是我闻:在决策树模型中,Gini指数和熵(Entropy)是用来计算节点纯度的两种方法。它们都是评估分裂点的好坏,以选择最佳的属性来分裂。让我们先来了解一下这两种方法的定义,然后通过一个简单的例子来讨论它们之间的区别。Gini指数Gini指数是一个衡量数据分布不均匀程度的指标。在决策树中,它用于评估数据集的不纯度。Gini指数越低,数据的纯度越高。其计算公式为:Gini=1−∑i=1npi2Gi
- 00计算机视觉学习内容
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉(ComputerVision)开发需要掌握数学基础、编程语言、图像处理、机器学习、深度学习等多个方面的知识。以下是一个系统的学习路线:1️⃣数学基础(核心理论支撑)计算机视觉涉及很多数学概念,以下是必备数学知识:✅线性代数(矩阵运算是计算机视觉的核心)向量、矩阵运算(加减、乘法、转置)特征值与特征向量SVD(奇异值分解),用于图像压缩、降维齐次坐标变换(用于3D计算机视觉)✅概率统计(
- Z-library数字图书馆镜像地址/官网入口及客户端app(持续更新)
读书读书笔记
Z-Library(简称z-lib,前身为BookFinder)是一个影子图书馆和开放获取文件分享计划,用户可在此网络下载期刊文章以及各种类型的书籍。截止2022年6月12日,该网站共收录了10,456,034本书和84,837,646篇文章。zlibrary电脑客户端/安卓appzlibrary(windows/mac/安卓app)客户端下载:https://pan.quark.cn/s/323
- 国外大型 3d 建模 工控软件 是如何演变成如今这种形态的
七贤岭双花红棍
开发语言
国外大型3D建模和工控软件(如AutoCAD、CATIA、SolidWorks、SiemensNX、PTCCreo等)的演变历程,是技术突破、行业需求、市场竞争和生态体系共同作用的结果。以下从技术、行业、商业三个维度解析其发展路径:一、技术演进的底层逻辑从「几何建模」到「全生命周期管理」1960s-1970s:几何建模的诞生早期CAD(计算机辅助设计)以线框模型为主,仅能表达基本几何形状(如美国洛
- 一站式3D虚拟展厅搭建方案,让企业展示更高效
jimumeta
虚拟展厅3D行业资讯3d3D展厅虚拟展厅数字人
在数字化浪潮中,众多企业倾向于采用线上3D虚拟展厅来展现其产品特色、环境风貌及企业实力。然而,构建一个高质量的3D虚拟展厅不仅要求专业的技术背景,还需投入大量的时间和人力资源。视创云展能够以低成本高效率地搭建3D虚拟展厅,通过整合虚拟数字人与虚拟场景,促进虚拟环境中的多人互动,营造出一种超沉浸式的“零距离”社交体验。丰富的3D展厅模板:视创云展平台汇聚了大量预设的3D展厅模板,用户只需简单拖拽和编
- 01计算机视觉学习计划
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉系统学习计划(3-6个月)本计划按照数学→编程→图像处理→机器学习→深度学习→3D视觉→项目实战的顺序,确保从基础到高级,结合理论和实践。第一阶段(第1-2个月):基础夯实✅目标:掌握数学基础、Python/C++编程、基本图像处理1️⃣数学基础(2周)每日2小时线性代数:矩阵运算、特征值分解(推荐《线性代数及其应用》)概率统计:高斯分布、贝叶斯定理微积分:偏导数、梯度下降傅里叶变换:图
- 决策树 vs 神经网络:何时使用?
HP-Succinum
机器学习决策树神经网络算法
目录1.决策树(DecisionTrees)1.1特点1.2优点1.3缺点1.4适用场景2.神经网络(NeuralNetworks)2.1特点2.2优点2.3缺点2.4适用场景3.何时选择哪种方法?4.结合使用的可能性5.总结在机器学习领域,决策树(DecisionTrees)和神经网络(NeuralNetworks)是两种常见但风格截然不同的算法。它们各自适用于不同类型的问题,本文将介绍它们的特
- Github 2024-07-12 Java开源项目日报Top10
老孙正经胡说
githubjava开源Github趋势分析开源项目PythonGolang
根据GithubTrendings的统计,今日(2024-07-12统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下:开发语言项目数量Java项目10Android开源轻量级流媒体前端创建周期:3158天开发语言:Java协议类型:GNUGeneralPublicLicensev3.0Star数量:28641个Fork数量:2896次关注人数:28641人贡献人数:312人Open
- 机器视觉3D线激光轮廓仪的精度为什么高
视觉人机器视觉
杂说3d机器人opencv人工智能视觉检测
3D激光轮廓仪的高精度源于其硬件设计、光学系统、软件算法及环境控制等多方面的协同优化,以下是具体原因的分点解析:激光光源的高性能单色性与方向性:激光具有极好的单色性和准直性,光束发散角小,能形成稳定的光斑,减少光路偏差。高稳定性:激光器输出功率和波长稳定,避免因光源波动导致的测量误差。短波长优势:部分激光采用短波长(如蓝光),可检测更微小的表面细节,提升分辨率。高分辨率传感器CMOS/CCD传感器
- 常用连接linux工具
weixin_30585437
运维操作系统数据库
常用连接linux工具http://yut-i.blog.163.com/blog/static/242577822014212104419558/常用连接linux工具一般我们装linux,基本上都是用来做服务器的,而且基本上服务器也只有一个主机,没有键盘和显示器,在无法接触到物理机的情况下,我们如何对服务器进行管理呢?本篇文章,将会介绍在工作中接触的常用连接linux的工具。putty下载地址
- flink入门
Thomas2143
总结flinkscalakafka
flink安装flink本地安装demo运行本地模式安装|ApacheFlinkflink1.13.1为例:cd/optwgethttps://mirrors.advancedhosters.com/apache/flink/flink-1.13.1/flink-1.13.1-bin-scala_2.12.tgz
- 使用 Dlib 库进行人脸检测和人脸识别
萧鼎
python基础到进阶教程计算机视觉人工智能python人脸识别人脸检测
使用Dlib库进行人脸检测和人脸识别什么是Dlib?Dlib是一个广泛使用的C++库,提供了多种用于机器学习和计算机视觉的工具。它包含了人脸检测、人脸识别、物体检测、图像处理等功能。Dlib具有高效、易用的Python接口,因此它也被广泛应用于Python中进行深度学习和计算机视觉任务。安装Dlib首先,我们需要在Python环境中安装Dlib库。你可以通过pip进行安装:pipinstalldl
- 介绍常见的图片分类模型与算法
萧鼎
python基础到进阶教程算法分类数据挖掘
介绍常见的图片分类模型与算法在机器学习和深度学习的领域中,图片分类任务是一个广泛的应用场景。随着深度学习技术的飞速发展,很多强大的图像分类算法和模型已经被提出,广泛应用于从医疗影像到自动驾驶、从人脸识别到图像检索等多个领域。本文将重点介绍多种用于图像分类的经典算法与模型,帮助你了解在图像分类任务中常用的技术。1.传统机器学习模型在深度学习崭露头角之前,传统的机器学习模型是图像分类的主流方法。这些模
- 【三维路径规划】混合蝴蝶粒子群算法、粒子群算法和蝴蝶算法无人机复杂山地环境下航迹规划【含Matlab源码 11127期】
Matlab领域
Matlab路径规划(高阶版)matlab
Matlab领域博客之家博主简介:985研究生,Matlab领域科研开发者;个人主页:Matlab领域代码获取方式:CSDNMatlab领域—代码获取方式座右铭:路漫漫其修远兮,吾将上下而求索。更多Matlab路径规划仿真内容点击①Matlab路径规划(高阶版)②付费专栏Matlab路径规划(进阶版)③付费专栏Matlab路径规划(初级版)⛳️关注CSDNMatlab领域,更多资源等你来!!⛄一、
- 基于51单片机的多路抢答器犯规可设置时间proteus仿真
weixin_46018686
51单片机proteus嵌入式硬件
地址:https://pan.baidu.com/s/1MB7Y7kqFeb9-97vwRuwHWA提取码:1234仿真图:芯片/模块的特点:AT89C52/AT89C51简介:AT89C52/AT89C51是一款经典的8位单片机,是意法半导体(STMicroelectronics)公司生产的一系列单片机之一。它基于8051内核,并具有许多与其兼容的特性。主要特点如下:内部存储器:具有8KB的闪存
- 量化投资与算法交易
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介量化投资(Quantitativeinvestment)和算法交易(AlgorithmicTrading),两者是近几年兴起的两个热门词汇。市场对这两个词汇的认识也是逐渐加深。在过去几年里,人们普遍认为,算法交易和机器学习结合是未来股票、期货等金融产品的必然趋势。机器学习是由多个数据源(如财务报表、交易历史数据、社交网络数据等)自动分析生成的模型,能够预测出股价
- 工业级Pandas性能优化:Dask/Modin实战教程
闲人编程
Python数据分析实战精要pandas性能优化分布式GPU加速DaskModin数据分析
目录工业级Pandas性能优化:Dask/Modin实战教程1.引言与背景1.1Pandas的局限性1.2分布式计算与GPU加速的需求1.3Dask与Modin简介2.数据集介绍3.工业级数据处理理论基础3.1内存优化3.2计算并行化3.3GPU加速4.实验环境与依赖库5.数据处理与分析流程6.Dask实战:分布式计算与GPU加速7.Modin实战:简洁易用的并行Pandas接口8.数据分析领域的
- Unity AI 技术浅析(二)
爱研究的小牛
AIGC—游戏制作AIGC—虚拟现实unity人工智能游戏引擎AIGC机器学习深度学习
UnityAI是Unity引擎中集成的智能技术,旨在为游戏开发者、虚拟现实(VR)和增强现实(AR)应用开发者提供强大的AI工具和功能。UnityAI涵盖了从智能代理(Agents)、机器学习(MachineLearning)到自然语言处理(NLP)等多个领域。一、UnityAI的工作原理1.智能代理(Agents)UnityAI的核心之一是智能代理(Agents),这些代理可以模拟游戏中的非玩家
- Paper Reading | AI & 数据库融合经典论文回顾
数据库人工智能阅读
人工智能(AI)和数据库(DB)在过去的50年里得到了广泛的研究,随着数据库近年来的不断发展,数据库开始与人工智能结合,数据库和人工智能(AI)可以相互促进。一方面,AI可以使数据库更加智能化(AI4DB)。例如,传统的数据库优化技术无法满足大规模数据库实例、各种应用程序和多样化用户的高性能要求,尤其是在云上。幸运的是,基于机器学习的技术可以缓解这个问题。另一方面,数据库技术可以优化AI模型(DB
- 2025年西安各行业企业奖励补贴政策和西安区县申报奖补项目条件
WOTAO15656016356
经验分享科技
2025年西安市政府补贴政策及12条各类常规政策申报奖补根据2025年西安市及各区的政策文件,以下是各行业企业奖励补贴政策及区县申报条件的分类整理:一、西安鼓励科技创新与新兴产业奖励政策西安市新城区、碑林区、莲湖区、灞桥区、未央区、雁塔区、阎良区、临潼区、长安区、高陵区、鄠邑区企业如果有想要申报的奖补政策,可以参考LIANXI。1.西安高新技术企业培育首次认定国家高新技术企业:奖励20万元,重新认
- 2024年Python最新蓝桥杯 基础练习全解 答案+解析 共17题 python,三年经验Python开发面经总结
2401_84139963
程序员python学习面试
最后Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习Python门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的Pytho
- 人工智能基础知识
yzx991013
人工智能
首先分为两大类:一:机器视觉cv1.特征比较明显2.经典模型:cnn,resnet,deepface,yolov(1-12),vi-transformer。缺点:不能解决收听问题。3.落地,无人识别,轨道追踪,无人驾驶,(主要解决看的东西)。二:自然语言处理nlp(语音识别)处理(文本)方面解决(说和听的问题),RNN,LSTM,attention,transformer(基于规则的翻译,超越普通
- 机器学习——使用分类特征的一种独热编码,
小卷心菜.
机器学习人工智能
在我们目前看到的例子中,每个特性只能具有两个可能的值中的一个,耳朵形状不是尖的就是软的,脸型不是圆就是不圆,胡须不是存在就是不存在,但是如果特性可以具有两个以上的离散值呢?如何使用一个热编码来解决这样的特性?下图是我们宠物收养中心申请的新培训集,所有的数据都是一样的,除了耳形特征有尖软之外还有椭圆形,所以这个特征仍然是一个分类值特征,但它可以有三个可能的值,而不仅仅是两个可能的值,这意味着当你在这
- FreeRTOS 源码结构解析与 STM32 HAL 库移植实践(任务创建、删除篇)
电科周杰伦
嵌入式开发FreeRTOSFreeRTOSstm32嵌入式开发实时操作系统RTOS任务调度任务控制块
1.FreeRTOS源码结构介绍1.1下载源码点击官网地址,选择FreeRTOS202212.01非LTS版本(非长期支持版),因为这个版本有着最全的历程和更多型号处理器支持。1.2文件夹结构介绍下载后主文件FreeRTOSv202212.01下包含以下文件:名称描述FreeRTOSFreeRTOS的核心源码,提供实时操作系统的**所有必要组件****,如任务调度、内存管理、信号量、队列等。Fre
- C语言数据库管理系统示例:文件操作、内存管理、错误处理与动态数据库设计 栈和堆的内存分配
电科周杰伦
yxyx学习记录Linux学习记录C语言数据库c语言
C语言的管理数据库完整的小型系统示例:#include//引入标准输入输出库,提供printf等功能#include//引入断言库,用于调试时检查条件#include//引入标准库,提供malloc、free、exit等功能#include//引入错误号库,用于获取系统调用的错误号#include//引入字符串处理库,提供strncpy等字符串操作函数#defineMAX_DATA512//定义常
- oracle rman 00571,rman备份报RMAN-00571、RMAN-00569、RMAN-03009
weixin_39864571
oraclerman00571
rman备份时报错信息:RMAN-03009:failureofbackupcommandonORA_DISK_1channelat07/03/201210:35:17ORA-19809:limitexceededforrecoveryfilesORA-19804:cannotreclaim52428800bytesdiskspacefrom2147483648limitRMAN-00571:==
- STP在线查看器
qq_38617050
3dSTP
概述STP在线查看器主要用于在线查看和预览STP(STEP)格式的文件,这些文件是三维图形数据,基于ASCII格式,并遵循ISO10303-21标准的正文编码的交换结构。STP在线查看器的核心功能是将STP文件转换为适合在线展示的格式,从而使用户能够在网页浏览器中直接查看和交互这些三维图形数据。让复杂的3D数据变得触手可及在机加工或相关行业中,STP/STEP文件是不可或缺的一部分。这些文件不仅包
- java Illegal overloaded getter method with ambiguous type for propert的解决
zwllxs
javajdk
好久不来iteye,今天又来看看,哈哈,今天碰到在编码时,反射中会抛出
Illegal overloaded getter method with ambiguous type for propert这么个东东,从字面意思看,是反射在获取getter时迷惑了,然后回想起java在boolean值在生成getter时,分别有is和getter,也许我们的反射对象中就有is开头的方法迷惑了jdk,
- IT人应当知道的10个行业小内幕
beijingjava
工作互联网
10. 虽然IT业的薪酬比其他很多行业要好,但有公司因此视你为其“佣人”。
尽管IT人士的薪水没有互联网泡沫之前要好,但和其他行业人士比较,IT人的薪资还算好点。在接下的几十年中,科技在商业和社会发展中所占分量会一直增加,所以我们完全有理由相信,IT专业人才的需求量也不会减少。
然而,正因为IT人士的薪水普遍较高,所以有些公司认为给了你这么多钱,就把你看成是公司的“佣人”,拥有你的支配
- java 实现自定义链表
CrazyMizzz
java数据结构
1.链表结构
链表是链式的结构
2.链表的组成
链表是由头节点,中间节点和尾节点组成
节点是由两个部分组成:
1.数据域
2.引用域
3.链表的实现
&nbs
- web项目发布到服务器后图片过一会儿消失
麦田的设计者
struts2上传图片永久保存
作为一名学习了android和j2ee的程序员,我们必须要意识到,客服端和服务器端的交互是很有必要的,比如你用eclipse写了一个web工程,并且发布到了服务器(tomcat)上,这时你在webapps目录下看到了你发布的web工程,你可以打开电脑的浏览器输入http://localhost:8080/工程/路径访问里面的资源。但是,有时你会突然的发现之前用struts2上传的图片
- CodeIgniter框架Cart类 name 不能设置中文的解决方法
IT独行者
CodeIgniterCart框架
今天试用了一下CodeIgniter的Cart类时遇到了个小问题,发现当name的值为中文时,就写入不了session。在这里特别提醒一下。 在CI手册里也有说明,如下:
$data = array(
'id' => 'sku_123ABC',
'qty' => 1,
'
- linux回收站
_wy_
linux回收站
今天一不小心在ubuntu下把一个文件移动到了回收站,我并不想删,手误了。我急忙到Nautilus下的回收站中准备恢复它,但是里面居然什么都没有。 后来我发现这是由于我删文件的地方不在HOME所在的分区,而是在另一个独立的Linux分区下,这是我专门用于开发的分区。而我删除的东东在分区根目录下的.Trash-1000/file目录下,相关的删除信息(删除时间和文件所在
- jquery回到页面顶端
知了ing
htmljquerycss
html代码:
<h1 id="anchor">页面标题</h1>
<div id="container">页面内容</div>
<p><a href="#anchor" class="topLink">回到顶端</a><
- B树、B-树、B+树、B*树
矮蛋蛋
B树
原文地址:
http://www.cnblogs.com/oldhorse/archive/2009/11/16/1604009.html
B树
即二叉搜索树:
1.所有非叶子结点至多拥有两个儿子(Left和Right);
&nb
- 数据库连接池
alafqq
数据库连接池
http://www.cnblogs.com/xdp-gacl/p/4002804.html
@Anthor:孤傲苍狼
数据库连接池
用MySQLv5版本的数据库驱动没有问题,使用MySQLv6和Oracle的数据库驱动时候报如下错误:
java.lang.ClassCastException: $Proxy0 cannot be cast to java.sql.Connec
- java泛型
百合不是茶
java泛型
泛型
在Java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的“任意化”,任意化的缺点就是要实行强制转换,这种强制转换可能会带来不安全的隐患
泛型的特点:消除强制转换 确保类型安全 向后兼容
简单泛型的定义:
泛型:就是在类中将其模糊化,在创建对象的时候再具体定义
class fan
- javascript闭包[两个小测试例子]
bijian1013
JavaScriptJavaScript
一.程序一
<script>
var name = "The Window";
var Object_a = {
name : "My Object",
getNameFunc : function(){
var that = this;
return function(){
- 探索JUnit4扩展:假设机制(Assumption)
bijian1013
javaAssumptionJUnit单元测试
一.假设机制(Assumption)概述 理想情况下,写测试用例的开发人员可以明确的知道所有导致他们所写的测试用例不通过的地方,但是有的时候,这些导致测试用例不通过的地方并不是很容易的被发现,可能隐藏得很深,从而导致开发人员在写测试用例时很难预测到这些因素,而且往往这些因素并不是开发人员当初设计测试用例时真正目的,
- 【Gson四】范型POJO的反序列化
bit1129
POJO
在下面这个例子中,POJO(Data类)是一个范型类,在Tests中,指定范型类为PieceData,POJO初始化完成后,通过
String str = new Gson().toJson(data);
得到范型化的POJO序列化得到的JSON串,然后将这个JSON串反序列化为POJO
import com.google.gson.Gson;
import java.
- 【Spark八十五】Spark Streaming分析结果落地到MySQL
bit1129
Stream
几点总结:
1. DStream.foreachRDD是一个Output Operation,类似于RDD的action,会触发Job的提交。DStream.foreachRDD是数据落地很常用的方法
2. 获取MySQL Connection的操作应该放在foreachRDD的参数(是一个RDD[T]=>Unit的函数类型),这样,当foreachRDD方法在每个Worker上执行时,
- NGINX + LUA实现复杂的控制
ronin47
nginx lua
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-递归判断数组是否升序
bylijinnan
java
public class IsAccendListRecursive {
/*递归判断数组是否升序
* if a Integer array is ascending,return true
* use recursion
*/
public static void main(String[] args){
IsAccendListRecursiv
- Netty源码学习-DefaultChannelPipeline2
bylijinnan
javanetty
Netty3的API
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/ChannelPipeline.html
里面提到ChannelPipeline的一个“pitfall”:
如果ChannelPipeline只有一个handler(假设为handlerA)且希望用另一handler(假设为handlerB)
来
- Java工具之JPS
chinrui
java
JPS使用
熟悉Linux的朋友们都知道,Linux下有一个常用的命令叫做ps(Process Status),是用来查看Linux环境下进程信息的。同样的,在Java Virtual Machine里面也提供了类似的工具供广大Java开发人员使用,它就是jps(Java Process Status),它可以用来
- window.print分页打印
ctrain
window
function init() {
var tt = document.getElementById("tt");
var childNodes = tt.childNodes[0].childNodes;
var level = 0;
for (var i = 0; i < childNodes.length; i++) {
- 安装hadoop时 执行jps命令Error occurred during initialization of VM
daizj
jdkhadoopjps
在安装hadoop时,执行JPS出现下面错误
[slave16]
[email protected]:/tmp/hsperfdata_hdfs# jps
Error occurred during initialization of VM
java.lang.Error: Properties init: Could not determine current working
- PHP开发大型项目的一点经验
dcj3sjt126com
PHP重构
一、变量 最好是把所有的变量存储在一个数组中,这样在程序的开发中可以带来很多的方便,特别是当程序很大的时候。变量的命名就当适合自己的习惯,不管是用拼音还是英语,至少应当有一定的意义,以便适合记忆。变量的命名尽量规范化,不要与PHP中的关键字相冲突。 二、函数 PHP自带了很多函数,这给我们程序的编写带来了很多的方便。当然,在大型程序中我们往往自己要定义许多个函数,几十
- android笔记之--向网络发送GET/POST请求参数
dcj3sjt126com
android
使用GET方法发送请求
private static boolean sendGETRequest (String path,
Map<String, String> params) throws Exception{
//发送地http://192.168.100.91:8080/videoServi
- linux复习笔记 之bash shell (3) 通配符
eksliang
linux 通配符linux通配符
转载请出自出处:
http://eksliang.iteye.com/blog/2104387
在bash的操作环境中有一个非常有用的功能,那就是通配符。
下面列出一些常用的通配符,如下表所示 符号 意义 * 万用字符,代表0个到无穷个任意字符 ? 万用字符,代表一定有一个任意字符 [] 代表一定有一个在中括号内的字符。例如:[abcd]代表一定有一个字符,可能是a、b、c
- Android关于短信加密
gqdy365
android
关于Android短信加密功能,我初步了解的如下(只在Android应用层试验):
1、因为Android有短信收发接口,可以调用接口完成短信收发;
发送过程:APP(基于短信应用修改)接受用户输入号码、内容——>APP对短信内容加密——>调用短信发送方法Sm
- asp.net在网站根目录下创建文件夹
hvt
.netC#hovertreeasp.netWeb Forms
假设要在asp.net网站的根目录下建立文件夹hovertree,C#代码如下:
string m_keleyiFolderName = Server.MapPath("/hovertree");
if (Directory.Exists(m_keleyiFolderName))
{
//文件夹已经存在
return;
}
else
{
try
{
D
- 一个合格的程序员应该读过哪些书
justjavac
程序员书籍
编者按:2008年8月4日,StackOverflow 网友 Bert F 发帖提问:哪本最具影响力的书,是每个程序员都应该读的?
“如果能时光倒流,回到过去,作为一个开发人员,你可以告诉自己在职业生涯初期应该读一本, 你会选择哪本书呢?我希望这个书单列表内容丰富,可以涵盖很多东西。”
很多程序员响应,他们在推荐时也写下自己的评语。 以前就有国内网友介绍这个程序员书单,不过都是推荐数
- 单实例实践
跑龙套_az
单例
1、内部类
public class Singleton {
private static class SingletonHolder {
public static Singleton singleton = new Singleton();
}
public Singleton getRes
- PO VO BEAN 理解
q137681467
VODTOpo
PO:
全称是 persistant object持久对象 最形象的理解就是一个PO就是数据库中的一条记录。 好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。
BO:
全称是 business object:业务对象 主要作用是把业务逻辑封装为一个对象。这个对
- 战胜惰性,暗自努力
金笛子
努力
偶然看到一句很贴近生活的话:“别人都在你看不到的地方暗自努力,在你看得到的地方,他们也和你一样显得吊儿郎当,和你一样会抱怨,而只有你自己相信这些都是真的,最后也只有你一人继续不思进取。”很多句子总在不经意中就会戳中一部分人的软肋,我想我们每个人的周围总是有那么些表现得“吊儿郎当”的存在,是否你就真的相信他们如此不思进取,而开始放松了对自己的要求随波逐流呢?
我有个朋友是搞技术的,平时嘻嘻哈哈,以
- NDK/JNI二维数组多维数组传递
wenzongliang
二维数组jniNDK
多维数组和对象数组一样处理,例如二维数组里的每个元素还是一个数组 用jArray表示,直到数组变为一维的,且里面元素为基本类型,去获得一维数组指针。给大家提供个例子。已经测试通过。
Java_cn_wzl_FiveChessView_checkWin( JNIEnv* env,jobject thiz,jobjectArray qizidata)
{
jint i,j;
int s