设 X ~ N ( μ , σ 2 ) X\text{\large\textasciitilde}N(\mu,\sigma^2) X~N(μ,σ2),则 X X X的概率密度为 f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=2πσ1e−2σ2(x−μ)2函数图像:钟形曲线, x = μ x=\mu x=μ为对称轴且为最大值点,最大值为 1 2 π σ \frac{1}{\sqrt{2\pi}\sigma} 2πσ1, σ \sigma σ越小图像越尖锐。
标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1):设 X ~ N ( 0 , 1 ) X\text{\large\textasciitilde}N(0,1) X~N(0,1),则 X X X的概率密度函数记作 ϕ ( x ) = 1 2 π e − x 2 2 \phi(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} ϕ(x)=2π1e−2x2 X X X的分布函数记作 Φ ( x ) \Phi(x) Φ(x),满足 Φ ( 0 ) = 1 2 , Φ ( − x ) = 1 − Φ ( x ) \Phi(0)=\frac{1}{2},\quad\Phi(-x)=1-\Phi(x) Φ(0)=21,Φ(−x)=1−Φ(x)若 X ~ N ( μ , σ 2 ) X\text{\large\textasciitilde}N(\mu,\sigma^2) X~N(μ,σ2),则 Z = X − μ σ ~ N ( 0 , 1 ) Z=\frac{X-\mu}{\sigma}\text{\large\textasciitilde}N(0,1) Z=σX−μ~N(0,1)。
X ~ N ( μ , σ 2 ) ⟹ Y = k X + b ~ N ( k μ + b , k 2 σ 2 ) X\text{\large\textasciitilde}N(\mu,\sigma^2)\implies Y=kX+b\,\text{\large\textasciitilde}\,N(k\mu+b,k^2\sigma^2) X~N(μ,σ2)⟹Y=kX+b~N(kμ+b,k2σ2)(其中 b ≠ 0 b\ne0 b=0)
X ~ N ( μ , σ 2 ) ⟹ E ( X ) = μ , D ( X ) = σ 2 , σ ( x ) = σ X\text{\large\textasciitilde}N(\mu,\sigma^2)\implies E(X)=\mu,\ D(X)=\sigma^2,\ \sigma(x)=\sigma X~N(μ,σ2)⟹E(X)=μ, D(X)=σ2, σ(x)=σ
中心极限定理:
中心极限定理 | 条件 | 结论(当 n n n足够大时近似成立) |
---|---|---|
独立同分布中心极限定理 | 有有限的数学期望 E ( X k ) = μ E(X_k)=\mu E(Xk)=μ和方差 D ( X k ) = σ 2 ≠ 0 D(X_k)=\sigma^2\ne0 D(Xk)=σ2=0 | X ‾ ~ N ( μ , σ 2 n ) , ∑ k = 1 n X k ~ N ( n μ , n σ 2 ) \overline{X}\text{\large\textasciitilde}N\left(\mu,\frac{\sigma^2}{n}\right),\ \sum\limits_{k=1}^n X_k\text{\large\textasciitilde}N\left(n\mu,n\sigma^2\right) X~N(μ,nσ2), k=1∑nXk~N(nμ,nσ2) |
棣莫弗-拉普拉斯中心极限定理 | η n ~ B ( n , p ) \eta_n\text{\large\textasciitilde}B(n,p) ηn~B(n,p) | X ‾ ~ N ( p , p ( 1 − p ) n ) , η n ~ N ( n p , n p ( 1 − p ) ) \overline{X}\text{\large\textasciitilde}N\left(p,\frac{p(1-p)}{n}\right),\ \eta_n\text{\large\textasciitilde}N(np,np(1-p)) X~N(p,np(1−p)), ηn~N(np,np(1−p)) |
设 V \bm{V} V为 n n n阶正定对称阵, μ = ( μ 1 , μ 2 , ⋯ , μ n ) \bm{\mu}=(\mu_1,\mu_2,\cdots,\mu_n) μ=(μ1,μ2,⋯,μn)为 n n n维已知向量。记 x = ( x 1 , x 2 , ⋯ , x n ) ∈ R n \bm{x}=(x_1,x_2,\cdots,x_n)\in\mathbb R^n x=(x1,x2,⋯,xn)∈Rn。若 n n n维随机向量 X = ( X 1 , X 2 , ⋯ , X n ) \bm{X}=(X_1,X_2,\cdots,X_n) X=(X1,X2,⋯,Xn)的概率密度为 f ( x ) = 1 ( 2 π ) n 2 ∣ V ∣ 1 2 exp { − 1 2 ( x − μ ) V − 1 ( x − μ ) T } f(\bm{x})=\frac{1}{(2\pi)^{\frac{n}{2}}|\bm{V}|^{\frac{1}{2}}}\exp\left\{-\frac{1}{2}(\bm{x}-\bm{\mu})\bm{V}^{-1}(\bm{x}-\bm{\mu})^T\right\} f(x)=(2π)2n∣V∣211exp{−21(x−μ)V−1(x−μ)T}则称 X \bm{X} X服从 n n n维正态分布,记作 X = ( X 1 , X 2 , ⋯ , X n ) ~ N ( μ , V ) \bm{X}=(X_1,X_2,\cdots,X_n)\text{\large\textasciitilde}N(\bm{\mu},\bm{V}) X=(X1,X2,⋯,Xn)~N(μ,V)。
n n n维正态分布的基本性质:
设 X = ( X 1 , X 2 , ⋯ , X n ) ~ N ( μ , V ) \bm{X}=(X_1,X_2,\cdots,X_n)\text{\large\textasciitilde}N(\bm{\mu},\bm{V}) X=(X1,X2,⋯,Xn)~N(μ,V),则:
(1) μ i = E ( X i ) ( i = 1 , 2 , ⋯ , n ) \mu_i=E(X_i)(i=1,2,\cdots,n) μi=E(Xi)(i=1,2,⋯,n);
(2) V = ( v i j ) n × n \bm{V}=(v_{ij})_{n\times n} V=(vij)n×n是 X \bm{X} X的协方差矩阵,且 D ( X i ) = v i i D(X_i)=v_{ii} D(Xi)=vii, Cov ( X i , X j ) = v i j ( i , j = 1 , 2 , ⋯ , n ) \text{Cov}(X_i,X_j)=v_{ij}(i,j=1,2,\cdots,n) Cov(Xi,Xj)=vij(i,j=1,2,⋯,n);
(3) X i ~ N ( μ i , v i i ) X_i\text{\large\textasciitilde}N(\mu_i,v_{ii}) Xi~N(μi,vii);
(4) X 1 , X 2 , ⋯ , X n X_1,X_2,\cdots,X_n X1,X2,⋯,Xn相互独立 ⟺ X 1 , X 2 , ⋯ , X n {\color{red}\iff}X_1,X_2,\cdots,X_n ⟺X1,X2,⋯,Xn两两互不相关 ⟺ V = diag ( v 11 , v 22 , ⋯ , v n n ) \iff\bm{V}=\text{diag}(v_{11},v_{22},\cdots,v_{nn}) ⟺V=diag(v11,v22,⋯,vnn);
(5) 若 X 1 , X 2 , ⋯ , X n X_1,X_2,\cdots,X_n X1,X2,⋯,Xn相互独立,且各 X i ~ N ( μ i , σ i 2 ) X_i\text{\large\textasciitilde}N(\mu_i,\sigma_i^2) Xi~N(μi,σi2),则 ( X 1 , X 2 , ⋯ , X n ) ~ N ( μ , V ) (X_1,X_2,\cdots,X_n)\text{\large\textasciitilde}N(\bm{\mu},\bm{V}) (X1,X2,⋯,Xn)~N(μ,V),其中 μ = ( μ 1 , μ 2 , ⋯ , μ n ) \bm{\mu}=(\mu_1,\mu_2,\cdots,\mu_n) μ=(μ1,μ2,⋯,μn), V = diag ( σ 1 2 , σ 2 2 , ⋯ , σ n 2 ) \bm{V}=\text{diag}(\sigma_1^2,\sigma_2^2,\cdots,\sigma_n^2) V=diag(σ12,σ22,⋯,σn2);
(6) ( X 1 , X 2 , ⋯ , X n ) ~ N ( μ , V ) ⟺ X 1 , X 2 , ⋯ , X n (X_1,X_2,\cdots,X_n)\text{\large\textasciitilde}N(\bm{\mu},\bm{V})\iff X_1,X_2,\cdots,X_n (X1,X2,⋯,Xn)~N(μ,V)⟺X1,X2,⋯,Xn的任一非零线性组合 l 1 X 1 + l 2 X 2 + ⋯ + l n X n l_1X_1+l_2X_2+\cdots+l_nX_n l1X1+l2X2+⋯+lnXn服从一维正态分布;
(7)(正态随机向量的线性变换不变性) 若 ( X 1 , X 2 , ⋯ , X n ) ~ N ( μ , V ) (X_1,X_2,\cdots,X_n)\text{\large\textasciitilde}N(\bm{\mu},\bm{V}) (X1,X2,⋯,Xn)~N(μ,V),令 { Y 1 = a 11 X 1 + a 12 X 2 + ⋯ + a 1 n X n Y 2 = a 21 X 1 + a 22 X 2 + ⋯ + a 2 n X n ⋮ Y m = a m 1 X 1 + a m 2 X 2 + ⋯ + a m n X n \begin{cases}Y_1=a_{11}X_1+a_{12}X_2+\cdots+a_{1n}X_n\\Y_2=a_{21}X_1+a_{22}X_2+\cdots+a_{2n}X_n\\\vdots\\Y_m=a_{m1}X_1+a_{m2}X_2+\cdots+a_{mn}X_n\end{cases} ⎩ ⎨ ⎧Y1=a11X1+a12X2+⋯+a1nXnY2=a21X1+a22X2+⋯+a2nXn⋮Ym=am1X1+am2X2+⋯+amnXn则 Y = ( Y 1 , Y 2 , ⋯ , Y m ) \bm{Y}=(Y_1,Y_2,\cdots,Y_m) Y=(Y1,Y2,⋯,Ym)仍服从多维正态分布。
( X , Y ) ~ N ( μ 1 , μ 2 ; σ 1 2 , σ 2 2 ; ρ ) (X,Y)\text{\large\textasciitilde}N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;\rho) (X,Y)~N(μ1,μ2;σ12,σ22;ρ),则其概率密度为 f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 e − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] , x , y ∈ R f(x,y)=\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2}-2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}+\frac{(y-\mu_2)^2}{\sigma_2^2}\right]},x,y\in\mathbb R f(x,y)=2πσ1σ21−ρ21e−2(1−ρ2)1[σ12(x−μ1)2−2ρσ1σ2(x−μ1)(y−μ2)+σ22(y−μ2)2],x,y∈R其中 ρ \rho ρ就是 X X X和 Y Y Y的相关系数, X ~ N ( μ 1 , σ 1 2 ) X\text{\large\textasciitilde}N(\mu_1,\sigma_1^2) X~N(μ1,σ12), Y ~ N ( μ 2 , σ 2 2 ) Y\text{\large\textasciitilde}N(\mu_2,\sigma_2^2) Y~N(μ2,σ22)。
推导过程:
Cov ( X , Y ) = ρ ( X , Y ) D ( x ) D ( Y ) = ρ σ 1 σ 2 \text{Cov}(X,Y)=\rho(X,Y)\sqrt{D(x)}\sqrt{D(Y)}=\rho\sigma_1\sigma_2 Cov(X,Y)=ρ(X,Y)D(x)D(Y)=ρσ1σ2 V = ( D ( x ) Cov ( X , Y ) Cov ( X , Y ) D ( Y ) ) = ( σ 1 2 ρ σ 1 σ 2 ρ σ 1 σ 2 σ 2 2 ) \bm{V}=\begin{pmatrix}D(x)&\text{Cov}(X,Y)\\\text{Cov}(X,Y)&D(Y)\end{pmatrix}=\begin{pmatrix}\sigma_1^2&\rho\sigma_1\sigma_2\\\rho\sigma_1\sigma_2&\sigma_2^2\end{pmatrix} V=(D(x)Cov(X,Y)Cov(X,Y)D(Y))=(σ12ρσ1σ2ρσ1σ2σ22) det ( V ) = σ 1 2 σ 2 2 − ρ 2 σ 1 2 σ 2 2 = ( 1 − ρ 2 ) σ 1 2 σ 2 2 \det(\bm{V})=\sigma_1^2\sigma_2^2-\rho^2\sigma_1^2\sigma_2^2=(1-\rho^2)\sigma_1^2\sigma_2^2 det(V)=σ12σ22−ρ2σ12σ22=(1−ρ2)σ12σ22 V − 1 = 1 ∣ V ∣ ( σ 2 2 − ρ σ 1 σ 2 − ρ σ 1 σ 2 σ 1 2 ) \bm{V}^{-1}=\frac{1}{|\bm{V}|}\begin{pmatrix}\sigma_2^2&-\rho\sigma_1\sigma_2\\-\rho\sigma_1\sigma_2&\sigma_1^2\end{pmatrix} V−1=∣V∣1(σ22−ρσ1σ2−ρσ1σ2σ12) ( x − μ ) V − 1 ( x − μ ) T = 1 ( 1 − ρ 2 ) σ 1 2 σ 2 2 [ σ 2 2 ( x − μ 1 ) 2 − 2 ρ σ 1 σ 2 ( x − μ 1 ) ( y − μ 2 ) + σ 1 2 ( x − μ 2 ) 2 ] (\bm{x}-\bm{\mu})\bm{V}^{-1}(\bm{x}-\bm{\mu})^T=\frac{1}{(1-\rho^2)\sigma_1^2\sigma_2^2}\left[\sigma_2^2(x-\mu_1)^2-2\rho\sigma_1\sigma_2(x-\mu_1)(y-\mu_2)+\sigma_1^2(x-\mu_2)^2\right] (x−μ)V−1(x−μ)T=(1−ρ2)σ12σ221[σ22(x−μ1)2−2ρσ1σ2(x−μ1)(y−μ2)+σ12(x−μ2)2]化简得 ( x − μ ) V − 1 ( x − μ ) T = 1 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] (\bm{x}-\bm{\mu})\bm{V}^{-1}(\bm{x}-\bm{\mu})^T=\frac{1}{(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2}-2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}+\frac{(y-\mu_2)^2}{\sigma_2^2}\right] (x−μ)V−1(x−μ)T=(1−ρ2)1[σ12(x−μ1)2−2ρσ1σ2(x−μ1)(y−μ2)+σ22(y−μ2)2]将以上式子代入多维正态分布的概率密度函数公式,即得 f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 e − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] , x , y ∈ R f(x,y)=\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2}-2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}+\frac{(y-\mu_2)^2}{\sigma_2^2}\right]},x,y\in\mathbb R f(x,y)=2πσ1σ21−ρ21e−2(1−ρ2)1[σ12(x−μ1)2−2ρσ1σ2(x−μ1)(y−μ2)+σ22(y−μ2)2],x,y∈R函数图像: