CNN应用在图片分类的场景中较多,可能给大家一个思维定势----CNN貌似只能应用在图片场景,其实CNN也可对文本进行分类。
卷积只是特征提取的一种方式,并不是只能处理图像,使用卷积只要能提取特征即可。
下图为卷积对文本分类的整体思路:
训练数据集为.csv文件,存储姓名、性别的映射关系,共351791条数据,我们要训练一个模型,用它来预测一个姓名属于“男”还是“女”。
训练程序
main.py
# coding:utf-8
import tensorflow as tf
import numpy as np
import csv
name_dataset = 'name.csv'
train_x = []
train_y = []
with open(name_dataset, 'r', encoding='utf-8') as csvfile:
read = csv.reader(csvfile)
# 按行读取CSV文件
for sample in read:
# 数据有标签
if len(sample) == 2:
train_x.append(sample[0])
if sample[1] == '男':
train_y.append([0, 1]) # 男,01,onehot编码
else:
train_y.append([1, 0]) # 女,10
# 指定当前一个人的名字最大长度。多截少补
max_name_length = max([len(name) for name in train_x])
print("最长名字的字符数:", max_name_length)
max_name_length = 8
counter = 0
# 词库表
vocabulary = {}
# 每个名字
for name in train_x:
counter += 1
tokens = [word for word in name]
# 每个字,统计词频
for word in tokens:
if word in vocabulary:
vocabulary[word] += 1
else:
vocabulary[word] = 1
# 排序
vocabulary_list = [' '] + sorted(vocabulary, key=vocabulary.get, reverse=True)
print(len(vocabulary_list))
# 对字进行编码。每个字都有唯一的标识符
vocab = dict([(x, y) for (y, x) in enumerate(vocabulary_list)])
train_x_vec = []
for name in train_x:
name_vec = []
# 对名字中的每个字
for word in name:
name_vec.append(vocab.get(word))
# 当前名字大小未满足最大值,填充
while len(name_vec) < max_name_length:
name_vec.append(0)
train_x_vec.append(name_vec)
#######################################
input_size = max_name_length
num_classes = 2
batch_size = 64
num_batch = len(train_x_vec) // batch_size
X = tf.placeholder(tf.int32, [None, input_size])
Y = tf.placeholder(tf.float32, [None, num_classes])
dropout_keep_prob = tf.placeholder(tf.float32)
# vocabulary_size:词库表总字数;embedding_size:每个名字映射成128维的向量
def neural_network(vocabulary_size, embedding_size=128, num_filters=128):
# embedding layer
with tf.name_scope("embedding"):
W = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
# 把名字映射成向量(?,8,128)
embedded_chars = tf.nn.embedding_lookup(W, X)
# 填充维度,把3维变成4维,便于进行卷积。用1进行填充。(?,8,128,1)
embedded_chars_expanded = tf.expand_dims(embedded_chars, -1)
# convolution + maxpool layer
# 用不同的filter_sizes得到不同的特征
filter_sizes = [3, 4, 5]
pooled_outputs = []
for i, filter_size in enumerate(filter_sizes):
with tf.name_scope("conv-maxpool-%s" % filter_size):
filter_shape = [filter_size, embedding_size, 1, num_filters]
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1))
b = tf.Variable(tf.constant(0.1, shape=[num_filters]))
conv = tf.nn.conv2d(embedded_chars_expanded, W, strides=[1, 1, 1, 1], padding="VALID")
h = tf.nn.relu(tf.nn.bias_add(conv, b))
pooled = tf.nn.max_pool(h, ksize=[1, input_size - filter_size + 1, 1, 1], strides=[1, 1, 1, 1],
padding="VALID")
pooled_outputs.append(pooled)
# 128*3
num_filters_total = num_filters * len(filter_sizes)
# 384特征拼一起
h_pool = tf.concat(pooled_outputs, 3)
# 384维特征
h_pool_flat = tf.reshape(h_pool, [-1, num_filters_total])
with tf.name_scope("dropout"):
h_drop = tf.nn.dropout(h_pool_flat, dropout_keep_prob)
with tf.name_scope("output"):
# 384*2
W = tf.get_variable("W", shape=[num_filters_total, num_classes],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.constant(0.1, shape=[num_classes]))
output = tf.nn.xw_plus_b(h_drop, W, b)
return output
def train_neural_network():
output = neural_network(len(vocabulary_list))
optimizer = tf.train.AdamOptimizer(1e-3)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=Y))
# compute_gradients和apply_gradients相当于minimize()。前者用于计算梯度,后者用于使用计算得到的梯度来更新对应的variable
grads_and_vars = optimizer.compute_gradients(loss)
train_op = optimizer.apply_gradients(grads_and_vars)
saver = tf.train.Saver(tf.global_variables())
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# 迭代200个epoch
for e in range(201):
# 迭代batch
for i in range(num_batch):
batch_x = train_x_vec[i * batch_size: (i + 1) * batch_size]
batch_y = train_y[i * batch_size: (i + 1) * batch_size]
_, loss_ = sess.run([train_op, loss], feed_dict={X: batch_x, Y: batch_y, dropout_keep_prob: 0.5})
if i % 1000 == 0:
print('epoch:', e, 'iter:', i, 'loss:', loss_)
if e % 100 == 0:
# .meta 存网络架构图;.data 存当前的权重
saver.save(sess, "./model/name2sex", global_step=e)
train_neural_network()
测试程序:
test.py
# coding:utf-8
import tensorflow as tf
import csv
name_dataset = 'name.csv'
train_x = []
train_y = []
with open(name_dataset, 'r', encoding='utf-8') as csvfile:
read = csv.reader(csvfile)
for sample in read:
if len(sample) == 2:
train_x.append(sample[0])
if sample[1] == '男':
train_y.append([0, 1]) # 男
else:
train_y.append([1, 0]) # 女
max_name_length = max([len(name) for name in train_x])
print("最长名字的字符数:", max_name_length)
max_name_length = 8
counter = 0
vocabulary = {}
for name in train_x:
counter += 1
tokens = [word for word in name]
for word in tokens:
if word in vocabulary:
vocabulary[word] += 1
else:
vocabulary[word] = 1
vocabulary_list = [' '] + sorted(vocabulary, key=vocabulary.get, reverse=True)
print(len(vocabulary_list))
vocab = dict([(x, y) for (y, x) in enumerate(vocabulary_list)])
train_x_vec = []
for name in train_x:
name_vec = []
for word in name:
name_vec.append(vocab.get(word))
while len(name_vec) < max_name_length:
name_vec.append(0)
train_x_vec.append(name_vec)
input_size = max_name_length
num_classes = 2
batch_size = 64
num_batch = len(train_x_vec) // batch_size
X = tf.placeholder(tf.int32, [None, input_size])
Y = tf.placeholder(tf.float32, [None, num_classes])
dropout_keep_prob = tf.placeholder(tf.float32)
def neural_network(vocabulary_size, embedding_size=128, num_filters=128):
# embedding layer
with tf.name_scope("embedding"):
W = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
embedded_chars = tf.nn.embedding_lookup(W, X)
embedded_chars_expanded = tf.expand_dims(embedded_chars, -1)
filter_sizes = [3, 4, 5]
pooled_outputs = []
for i, filter_size in enumerate(filter_sizes):
with tf.name_scope("conv-maxpool-%s" % filter_size):
filter_shape = [filter_size, embedding_size, 1, num_filters]
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1))
b = tf.Variable(tf.constant(0.1, shape=[num_filters]))
conv = tf.nn.conv2d(embedded_chars_expanded, W, strides=[1, 1, 1, 1], padding="VALID")
h = tf.nn.relu(tf.nn.bias_add(conv, b))
pooled = tf.nn.max_pool(h, ksize=[1, input_size - filter_size + 1, 1, 1], strides=[1, 1, 1, 1],
padding="VALID")
pooled_outputs.append(pooled)
num_filters_total = num_filters * len(filter_sizes)
h_pool = tf.concat(pooled_outputs, 3)
h_pool_flat = tf.reshape(h_pool, [-1, num_filters_total])
with tf.name_scope("dropout"):
h_drop = tf.nn.dropout(h_pool_flat, dropout_keep_prob)
with tf.name_scope("output"):
W = tf.get_variable("W", shape=[num_filters_total, num_classes],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.constant(0.1, shape=[num_classes]))
output = tf.nn.xw_plus_b(h_drop, W, b)
return output
def detect_sex(name_list):
x = []
for name in name_list:
name_vec = []
for word in name:
name_vec.append(vocab.get(word))
while len(name_vec) < max_name_length:
name_vec.append(0)
x.append(name_vec)
output = neural_network(len(vocabulary_list))
saver = tf.train.Saver(tf.global_variables())
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# 恢复前一次训练
'''
ckpt = tf.train.get_checkpoint_state('.')
if ckpt != None:
print(ckpt.model_checkpoint_path)
'''
# 加载当前模型
saver.restore(sess, './model/name2sex-200')
predictions = tf.argmax(output, 1)
res = sess.run(predictions, {X: x, dropout_keep_prob: 1.0})
i = 0
for name in name_list:
print(name, '女' if res[i] == 0 else '男')
i += 1
detect_sex(["张金龙", "段玉刚", "金华花"])
测试结果:
张金龙 男
段玉刚 男
金华花 女