OpenCV图像识别实战 第二节 opencv-python基本编程(3)

接上回,继续学习一些基本代码的实现

目录

1.直方图的绘制

 2.傅里叶变换(高频滤波器/低频滤波器的设计)

1.直方图的绘制

直方图绘制的目的:统计每个像素点分别由多少个

OpenCV图像识别实战 第二节 opencv-python基本编程(3)_第1张图片

代码实现 

import cv2
import numpy as np
import matplotlib.pyplot as plt

#直方图
img = cv2.imread('cat.png',0) #0表示灰度图
hist = cv2.calcHist([img],[0],None,[256],[0,255])
print(hist.shape)
#显示
plt.hist(img.ravel(),256)
plt.show()

效果 

 OpenCV图像识别实战 第二节 opencv-python基本编程(3)_第2张图片

 三原色直方图

代码

#三原色直方图
img = cv2.imread('cat.png')
color = ('b','g','r')
for i,col in enumerate(color):
    histr = cv2.calcHist([img],[i],None,[256],[0,256])
    plt.plot(histr,color = col)
    plt.xlim([0,256])
plt.show()

 效果

OpenCV图像识别实战 第二节 opencv-python基本编程(3)_第3张图片

 掩码的获取

#掩码
#创建掩码(mast) 所谓掩码就是你想要处理的图像部分
mask = np.zeros(img.shape[:2],np.uint8)
print(mask.shape)
mask[100:400,100:500] = 255 #想保存的地方值写成255
cv_show(mask,'mask')
#与操作后读取图像
masked_img = cv2.bitwise_and(img,img,mask = mask)
cv_show(masked_img,"masked_img")

效果 

OpenCV图像识别实战 第二节 opencv-python基本编程(3)_第4张图片

 OpenCV图像识别实战 第二节 opencv-python基本编程(3)_第5张图片

 均衡化的直方图

代码

#直方图均衡化
equ = cv2.equalizeHist(img)
plt.hist(equ.ravel(),256)
plt.show()

#均衡化前后对比
res = np.hstack((img,equ))
cv_show(res,'res')

 效果

OpenCV图像识别实战 第二节 opencv-python基本编程(3)_第6张图片

 

 自适应均衡化

#自适应均衡化(把图像分割,然后每块自己分别做均衡化)
clahe = cv2.createCLAHE(clipLimit=2.0,tileGridSize=(8,8))
res_clahe = clahe.apply(img)
cv_show(res_clahe,'res_clahe')

效果

 OpenCV图像识别实战 第二节 opencv-python基本编程(3)_第7张图片

 2.傅里叶变换(高频滤波器/低频滤波器)

中心思想:一个周期函数可以用正弦波堆叠起来

目的:在频域中,取实现图像处理会高效的多

应用:低频滤波器 及 高频滤波器

OpenCV图像识别实战 第二节 opencv-python基本编程(3)_第8张图片

 OpenCV图像识别实战 第二节 opencv-python基本编程(3)_第9张图片

 OpenCV图像识别实战 第二节 opencv-python基本编程(3)_第10张图片

代码实现

#傅里叶变换
import cv2
import numpy as np
import matplotlib.pyplot as plt

#傅里叶变换
img = cv2.imread('cat.png',0)
img_float32 = np.float32(img)   #转换成np.float32格式,opencv官方要求

dft = cv2.dft(img_float32,flags = cv2.DFT_COMPLEX_OUTPUT)  #执行一次傅里叶变换
dft_shift = np.fft.fftshift(dft)     #得到频谱图,将低频的值转换到中间位置,得到低频率在中间的结果
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))  #得到灰度图能表达的形式: magnitude函数对两个通道进行转换,转换的结果非常小,所以需要映射到0-255之间

plt.subplot(121),plt.imshow(img,cmap='gray')
plt.title('Input Image'),plt.xticks([]),plt.yticks([])
plt.subplot(122),plt.imshow(magnitude_spectrum, cmap='gray')
plt.title('Magnitude Spectrum'),plt.xticks([]),plt.yticks([])
plt.show()
#得到的图像低频的一般在中间,高频向外发散

 结果

OpenCV图像识别实战 第二节 opencv-python基本编程(3)_第11张图片

得到的图像低频的一般在中间,高频向外发散

低频滤波器

OpenCV图像识别实战 第二节 opencv-python基本编程(3)_第12张图片

思想:制作一个掩码,上文提到,低频是在中间的,所以我们保留中间的区域来制作掩码

代码实现

#低频滤波器
import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread('cat.png',0)
img_float32 = np.float32(img)   #转换成np.float32格式,opencv官方要求

dft = cv2.dft(img_float32,flags = cv2.DFT_COMPLEX_OUTPUT)  #执行一次傅里叶变换
dft_shift = np.fft.fftshift(dft)     #得到频谱图,将低频的值转换到中间位置,得到低频率在中间的结果

rows,cols = img.shape
crow,ccol = int(rows/2),int(cols/2) #找到中心位置

#低通滤波
mask = np.zeros((rows, cols, 2),np.uint8)  #构造np.zeros初始化 ,长和宽与图像一样
mask[crow-30:crow+30,ccol-30:ccol+30] = 1  #相当于中间区域取1,其它区域取0

#傅里叶逆变换IDFT
fshift = dft_shift*mask #将傅里叶变化后的图像与掩码结合到一起,为1的区域保留下来,不是1的区域归一掉
f_ishift = np.fft.ifftshift(fshift)  #ifftshift傅里叶逆变换,因为刚刚将低频点移到中间,现将中间点还回去,与第十行代码的fftshift对应
img_back = cv2.idft(f_ishift)  #在cv2中进行idft ,目前结果还是实部+虚部,不能直接看,需要转化成可观测的图像
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

plt.subplot(121),plt.imshow(img,cmap='gray')
plt.title('Input Image'),plt.xticks([]),plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap='gray')
plt.title('Result'),plt.xticks([]),plt.yticks([])
plt.show()

实现效果

OpenCV图像识别实战 第二节 opencv-python基本编程(3)_第13张图片

 高频滤波器

 OpenCV图像识别实战 第二节 opencv-python基本编程(3)_第14张图片

 设计思想:与低频相反,保留四周,去除中间

#高频滤波器
import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread('cat.png',0)
img_float32 = np.float32(img)   #转换成np.float32格式,opencv官方要求

dft = cv2.dft(img_float32,flags = cv2.DFT_COMPLEX_OUTPUT)  #执行一次傅里叶变换
dft_shift = np.fft.fftshift(dft)     #得到频谱图,将低频的值转换到中间位置,得到低频率在中间的结果

rows,cols = img.shape
crow,ccol = int(rows/2),int(cols/2) #找到中心位置

#高通滤波
mask = np.ones((rows, cols, 2),np.uint8)  #长和宽与图像一样
mask[crow-30:crow+30,ccol-30:ccol+30] = 0  #相当于中间区域取0,其它区域取1

#傅里叶逆变换IDFT
fshift = dft_shift*mask #将傅里叶变化后的图像与掩码结合到一起,为1的区域保留下来,不是1的区域归一掉
f_ishift = np.fft.ifftshift(fshift)  #ifftshift傅里叶逆变换,因为刚刚将低频点移到中间,现将中间点还回去,与第十行代码的fftshift对应
img_back = cv2.idft(f_ishift)  #在cv2中进行idft ,目前结果还是实部+虚部,不能直接看,需要转化成可观测的图像
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

plt.subplot(121),plt.imshow(img,cmap='gray')
plt.title('Input Image'),plt.xticks([]),plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap='gray')
plt.title('Result'),plt.xticks([]),plt.yticks([])
plt.show()

 效果图

OpenCV图像识别实战 第二节 opencv-python基本编程(3)_第15张图片

代码包:(82条消息) opencv-python学习代码-Python文档类资源-CSDN文库

你可能感兴趣的:(OpenCV图像识别,opencv,python,计算机视觉)