sklearn神经网络参数

下面写了一个超级简单的实例,训练和测试数据是mnist手写识别数据集:

from sklearn.neural_network import MLPClassifier

import gzip

import pickle

with gzip.open('./mnist.pkl.gz') as f_gz:

    train_data,valid_data,test_data = pickle.load(f_gz)

clf = MLPClassifier(solver='sgd',activation = 'identity',max_iter = 10,alpha = 1e-5,hidden_layer_sizes = (100,50),random_state = 1,verbose = True)

clf.fit(train_data[0][:10000],train_data[1][:10000])

print clf.predict(test_data[0][:10])

print(clf.score(test_data[0][:100],test_data[1][:100]))

print(clf.predict_proba(test_data[0][:10]))

参数说明:

参数说明:

  1. hidden_layer_sizes :例如hidden_layer_sizes=(50, 50),表示有两层隐藏层,第一层隐藏层有50个神经元,第二层也有50个神经元。

  2. activation :激活函数,{‘identity’, ‘logistic’, ‘tanh’, ‘relu’}, 默认relu

  • identity:f(x) = x

  • logistic:其实就是sigmod,f(x) = 1 / (1 + exp(-x)).

  • tanh:f(x) = tanh(x).

  • relu:f(x) = max(0, x)

  1. solver: {‘lbfgs’, ‘sgd’, ‘adam’}, 默认adam,用来优化权重
  • lbfgs:quasi-Newton方法的优化器

  • sgd:随机梯度下降

  • adam: Kingma, Diederik, and Jimmy Ba提出的机遇随机梯度的优化器

注意:默认solver ‘adam’在相对较大的数据集上效果比较好(几千个样本或者更多),对小数据集来说,lbfgs收敛更快效果也更好。

  1. alpha :float,可选的,默认0.0001,正则化项参数

  2. batch_size : int , 可选的,默认’auto’,随机优化的minibatches的大小batch_size=min(200,n_samples),如果solver是’lbfgs’,分类器将不使用minibatch

  3. learning_rate :学习率,用于权重更新,只有当solver为’sgd’时使用,{‘constant’,’invscaling’, ‘adaptive’},默认constant

  • ‘constant’: 有’learning_rate_init’给定的恒定学习率

  • ‘incscaling’:随着时间t使用’power_t’的逆标度指数不断降低学习率learning_rate_ ,effective_learning_rate = learning_rate_init / pow(t, power_t)

  • ‘adaptive’:只要训练损耗在下降,就保持学习率为’learning_rate_init’不变,当连续两次不能降低训练损耗或验证分数停止升高至少tol时,将当前学习率除以5.

  1. power_t: double, 可选, default 0.5,只有solver=’sgd’时使用,是逆扩展学习率的指数.当learning_rate=’invscaling’,用来更新有效学习率。

  2. max_iter: int,可选,默认200,最大迭代次数。

  3. random_state:int 或RandomState,可选,默认None,随机数生成器的状态或种子。

  4. shuffle: bool,可选,默认True,只有当solver=’sgd’或者‘adam’时使用,判断是否在每次迭代时对样本进行清洗。

  5. tol:float, 可选,默认1e-4,优化的容忍度

  6. learning_rate_int:double,可选,默认0.001,初始学习率,控制更新权重的补偿,只有当solver=’sgd’ 或’adam’时使用。

  7. verbose : bool, 可选, 默认False,是否将过程打印到stdout

  8. warm_start : bool, 可选, 默认False,当设置成True,使用之前的解决方法作为初始拟合,否则释放之前的解决方法。

  9. momentum : float, 默认 0.9,动量梯度下降更新,设置的范围应该0.0-1.0. 只有solver=’sgd’时使用.

  10. nesterovs_momentum : boolean, 默认True, Whether to use Nesterov’s momentum. 只有solver=’sgd’并且momentum > 0使用.

  11. early_stopping : bool, 默认False,只有solver=’sgd’或者’adam’时有效,判断当验证效果不再改善的时候是否终止训练,当为True时,自动选出10%的训练数据用于验证并在两步连续迭代改善,低于tol时终止训练。

  12. validation_fraction : float, 可选, 默认 0.1,用作早期停止验证的预留训练数据集的比例,早0-1之间,只当early_stopping=True有用

  13. beta_1 : float, 可选, 默认0.9,只有solver=’adam’时使用,估计一阶矩向量的指数衰减速率,[0,1)之间

  14. beta_2 : float, 可选, 默认0.999,只有solver=’adam’时使用估计二阶矩向量的指数衰减速率[0,1)之间

  15. epsilon : float, 可选, 默认1e-8,只有solver=’adam’时使用数值稳定值。

属性说明:

  • classes_:每个输出的类标签

  • loss_:损失函数计算出来的当前损失值

  • coefs_:列表中的第i个元素表示i层的权重矩阵

  • intercepts_:列表中第i个元素代表i+1层的偏差向量

  • n_iter_ :迭代次数

  • n_layers_:层数

  • n_outputs_:输出的个数

  • out_activation_:输出激活函数的名称。

方法说明:

  • fit(X,y):拟合

  • get_params([deep]):获取参数

  • predict(X):使用MLP进行预测

  • predic_log_proba(X):返回对数概率估计

  • predic_proba(X):概率估计

  • score(X,y[,sample_weight]):返回给定测试数据和标签上的平均准确度

-set_params(**params):设置参数。

你可能感兴趣的:(python)