- 基于图神经网络的ALS候选药物预测模型设计与实现
神经网络15044
MATLAB专栏神经网络深度学习神经网络人工智能深度学习机器学习
基于图神经网络的ALS候选药物预测模型设计与实现一、任务背景与意义肌萎缩侧索硬化症(ALS)是一种致命的神经退行性疾病,目前尚无有效治愈方法。传统药物发现流程耗时长、成本高,而人工智能技术为加速药物发现提供了新途径。本文设计并实现了一个基于图神经网络(GNN)的ALS候选药物预测模型,通过整合分子图结构信息和生物活性数据,实现对潜在治疗ALS化合物的高效筛选。二、系统架构设计
- NeighborGeo:基于邻居的IP地理定位(一)
路由跳变
IPgeolocationtcp/ip网络协议网络
NeighborGeo:基于neighbors的IP地理定位X.Wang,D.Zhao,X.Liu,Z.Zhang,T.Zhao,NeighborGeo:IPgeolocationbasedonneighbors,Comput.Netw.257(2025)110896,AbstractIP地址定位在网络安全、电子商务、社交媒体等领域至关重要。当前主流的图神经网络方法通过将IP定位任务重构为属性图中
- 百度7天GNN学习-图与图学习中
静静喜欢大白
pgl
目录1链接预测分析图学习的主要任务链接预测(Linkprediction)1.相似度分数2.性能指标(Performancemetrics)完整代码输出2节点标记预测分析完整代码输出3图嵌入图嵌入(GraphEmbedding)1.节点嵌入(NodeEmbedding)2.边嵌入(EdgeEmbedding)3.图嵌入(GraphEmbedding)完整代码输出小结小结参考1链接预测分析图学习的
- GNN多任务预测模型实现(二):将EXCEL数据转换为图数据
走的远一些
神经网络知识分享知识备份人工智能深度学习
目录一.引言二.加载和检查数据三.提取特征和标签四.标准化特征五.构建节点索引六.构建边及其特征七.总结八.结语一.引言在图神经网络(GraphNeuralNetworks,GNNs)的多任务学习场景中,数据预处理是至关重要的一步。尤其是当我们的数据存储在表格格式(如Excel文件)中时,如何有效地将其转换为图数据格式,是搭建GNN模型的基础。二.加载和检查数据第一步是加载数据并检查其格式。我们通
- 顶会新方向!14篇图神经网络(GNN)最新顶会论文汇总!(含2024)
AI科研技术派
神经网络人工智能深度学习
图神经网络(GNN)是深度学习领域中备受关注的前沿课题,它在处理图结构数据方面展现出了强大的潜力,随着研究的不断深入,越来越多的优秀论文在顶级学术会议上涌现。今天就给大家整理了14篇顶会中发表的图神经网络优质论文,一起看看这方面的最新研究成果吧!AAAI20241、Fine-tuningGraphNeuralNetworksbyPreservingGraphGenerativePatterns通过
- AI人工智能领域知识图谱在深度学习中的应用拓展
AI人工智能领域知识图谱在深度学习中的应用拓展关键词:知识图谱、深度学习、神经网络、图嵌入、知识表示学习、推理机制、应用场景摘要:本文深入探讨了知识图谱与深度学习的融合应用,系统性地分析了知识图谱在深度学习中的关键技术路径和应用场景。文章首先介绍了知识图谱的基本概念和表示方法,然后详细阐述了知识图谱与深度学习结合的多种技术路线,包括图神经网络、知识嵌入和推理机制等。接着通过具体案例展示了知识图谱增
- 搜索领域知识图谱的知识推理算法研究
搜索引擎技术
知识图谱算法人工智能ai
搜索领域知识图谱的知识推理算法研究关键词:知识图谱、知识推理、搜索算法、图神经网络、路径推理、规则推理、表示学习摘要:本文深入探讨搜索领域中知识图谱的知识推理算法。我们将从知识图谱的基本概念出发,分析不同类型的知识推理算法原理,包括基于规则的推理、基于表示的推理和基于路径的推理。通过实际案例和代码实现,展示这些算法如何提升搜索效果,最后讨论该领域的未来发展趋势和挑战。背景介绍目的和范围本文旨在系统
- 高斯混合模型(Gaussian Mixture Model, GMM)
不想秃头的程序
神经网络语音识别人工智能深度学习网络
高斯混合模型(GaussianMixtureModel,GMM)是一种概率模型,用于表示数据点由多个高斯分布(GaussianDistribution)混合生成的过程。它广泛应用于聚类分析、密度估计、图像分割、语音识别等领域,尤其适合处理非球形簇或多模态数据。以下是GMM的详细介绍:一、核心思想GMM假设数据是由多个高斯分布混合生成的,每个高斯分布代表一个簇(Cluster),并引入隐变量(Lat
- 【机器学习实战】Datawhale夏令营2:深度学习回顾
城主_全栈开发
机器学习机器学习深度学习人工智能
#DataWhale夏令营#ai夏令营文章目录1.深度学习的定义1.1深度学习&图神经网络1.2机器学习和深度学习的关系2.深度学习的训练流程2.1数学基础2.1.1梯度下降法基本原理数学表达步骤学习率α梯度下降的变体2.1.2神经网络与矩阵网络结构表示前向传播激活函数反向传播批处理卷积操作参数更新优化算法正则化初始化2.2激活函数Sigmoid函数:Tanh函数:ReLU函数(Rectified
- 动态图神经网络在社交网络演化分析中的应用
AI大模型应用实战
神经网络网络phpai
动态图神经网络在社交网络演化分析中的应用关键词:动态图神经网络、社交网络演化分析、图深度学习、时间序列分析、网络动力学摘要:本文深入探讨了动态图神经网络在社交网络演化分析中的应用。首先介绍了相关背景知识,包括目的范围、预期读者等。接着详细阐述了核心概念,如动态图神经网络的原理和架构,并通过示意图和流程图进行直观展示。对核心算法原理进行了深入讲解,结合Python代码给出具体操作步骤。同时,介绍了相
- 机器学习笔记【Week9】
kuiini
人工智能机器学习人工智能
一、异常检测问题动机在现实中,我们经常会遇到“异常检测”的任务:识别罕见、异常、不符合正常模式的数据点。例:工业设备故障检测,银行欺诈识别,异常流量检测等。核心特点:异常样本稀少,难以用监督学习训练模型。二、高斯分布建立算法前,需要假设每个特征满足高斯(正态)分布。在单一特征xjx_jxj上:p(xj;μj,σj2)=12π σjexp(−(xj−μj)22σj2)p(x_j;\mu_j,\si
- AAAI2022国际顶会Workshop将会讨论些什么?
AINLPer
国际会议自然语言处理深度学习自然语言处理人工智能机器学习神经网络
来源:AINLPer微信公众号(每日论文干货分享!!)编辑:ShuYini校稿:ShuYini时间:2021-12-091、引言 目前关于AAAI2022的论文List还没有贴出来,但是目前的WorkShop的日程已经出来了,今天整理了一下给大家分享。本次AAAI2022研讨会计划于2022年2月28日至3月1日,共有39个。其中在技术研究领域涉及:强化学习、图神经网络、交互式机器学习、模型
- 高斯混合模型(Gaussian Mixture Model, GMM)
爱看烟花的码农
ML机器学习概率论人工智能
一、GMM是什么?高斯混合模型(GaussianMixtureModel,GMM)是一种概率模型,用于表示数据分布是由多个高斯分布(正态分布)的加权组合构成的。它假设数据点是从若干个高斯分布中生成的,每个高斯分布代表一个“簇”或“子群体”。GMM是一种软聚类方法,与K-Means不同,它不仅能将数据点分配到某个簇,还能给出数据点属于每个簇的概率。1.1核心思想混合模型:GMM认为数据集中的每个数据
- (详细介绍)什么是 Spherical Gaussian(球形高斯分布)
音程
数学数学
文章目录什么是SphericalGaussian?几何意义:为什么叫“球形”?特点总结:应用场景举例:✅示例代码(Python)相关概念对比:SphericalGaussian(球形高斯分布)是概率论与统计学中一个非常常见且重要的概念,尤其在机器学习、信号处理、模式识别等领域有广泛应用。什么是SphericalGaussian?SphericalGaussianDistribution(球形高斯分
- 图神经网络(GNN)模型的基本原理
xiaocai_6666
神经网络人工智能深度学习
一、概述 在人工智能领域,数据的多样性促使研究人员不断探索新的模型与算法。传统的神经网络在处理像图像、文本这类具有固定结构的数据时表现出色,但面对具有不规则拓扑结构的图数据,如社交网络、化学分子结构、知识图谱等,却显得力不从心。 图神经网络(GraphNeuralNetworks,GNN)是一种直接在图结构数据上运行的神经网络,用于处理节点、边或整个图的特征信息。其核心思想是通过聚合邻域节点的
- 《A Gentle Introduction to Graph Neural Networks》
欧先生^_^
人工智能
这篇《AGentleIntroductiontoGraphNeuralNetworks》是一篇非常经典且对新手友好的图神经网络入门文章。我将为你深入浅出地解读它的核心思想、关键概念和重要性。这篇论文(更像是一篇博客文章或教程)的主要目的不是提出新的模型,而是系统性地、直观地解释GNN到底是什么,为什么需要它,以及它是如何工作的。我会将解读分为以下几个部分:核心动机:为什么我们需要GNN?核心思想:
- 图像处理之添加高斯与泊松噪声
from:http://blog.csdn.net/jia20003/article/details/8258052数学基础:什么是泊松噪声,就是噪声分布符合泊松分布模型。泊松分布(PoissonDi)的公式如下:关于泊松分布的详细解释看这里:http://zh.wikipedia.org/wiki/泊松分佈关于高斯分布与高斯噪声看这里:http://blog.csdn.net/jia20003/
- 图注意力卷积神经网络GAT在无线通信网络拓扑推理中的应用
zzc921
无线通信网络拓扑推理cnn人工智能神经网络无线通信网络拓扑推理WCNAGCNGAT
如果已经编写好了GCN的程序,改写GAT的程序是很方便的,torch_geometric.nn下既有一般图神经网络GCNConv包,也有图注意力神经网络GATConv包程序:#作者:zhouzhichao#创建时间:25年6月10日#内容:比较GAT和GCN在无线通信网络拓扑推理中的效果importwarningswarnings.simplefilter(action='ignore',cate
- AI推荐系统演进史:从协同过滤到图神经网络与强化学习的融合
万米商云
人工智能神经网络深度学习
每一次滑动手机屏幕,电商平台向你推荐心仪商品的背后,是超过百亿量级的浮点运算。从早期的“猜你喜欢”到如今的“比你更懂你”,商品推荐引擎已悄然完成从简单规则到深度智能的技术跃迁。一、协同过滤:推荐系统的基石与演进协同过滤(CollaborativeFiltering)作为推荐系统的“古典方法”,其核心思想朴素却有力:相似的人喜欢相似的东西。早期的矩阵分解技术(如2009年的SVD算法)将用户-物品交
- 深度解析六大AI爬虫工具:crawl4ai、FireCrawl、Scrapegraph-ai、Jina、SearXNG、Tavily技术对比与实战指南
一、引言在AI大模型时代,数据获取与处理是构建智能应用的核心环节。传统爬虫面临技术门槛高、反爬应对复杂、动态内容处理困难等挑战,而AI驱动的爬虫工具通过融合大语言模型(LLM)、图神经网络、自动化解析等技术,正在重塑数据抓取范式。本文将深度测评6款主流AI爬虫工具,从技术原理、核心功能、实战场景到性能对比,为开发者提供一站式选型指南。二、六大AI爬虫工具深度解析1.FireCrawl:LLM就绪数
- 基于图神经网络的自然语言处理:融合LangGraph与大型概念模型的情感分析实践
人工智能深度学习llm神经网络
在企业数字化转型进程中,非结构化文本数据的处理与分析已成为核心技术挑战。传统自然语言处理方法在处理客户反馈、社交媒体内容和内部文档等复杂数据集时,往往难以有效捕获文本间的深层语义关联和结构化关系。大型概念模型(LargeConceptModels,LCMs)与图神经网络的融合为这一挑战提供了创新解决方案,通过构建基于LangGraph的混合符号-语义处理管道,实现了更精准的情感分析、实体识别和主题
- 3DGS源码解读 - 高斯模型
__星辰大海__
3DGS人工智能
高斯模型三维高斯分布的概率密度函数定义为:f(x)=1(2π)3/2∣Σ∣1/2exp(−12(x−μ)TΣ−1(x−μ))f(\mathbf{x})=\frac{1}{(2\pi)^{3/2}|\Sigma|^{1/2}}\exp\left(-\frac{1}{2}(\mathbf{x}-\mu)^T\Sigma^{-1}(\mathbf{x}-\mu)\right)f(x)=(2π)3/2∣
- 高斯混合模型(GMM)——完整推导与代码实现
Expecto0
机器学习机器学习算法
GaussianMixedModel应用聚类K-means无法处理两个聚类中心点相同的类。比如A∼N(μ, σ12), B∼N(μ,σ22)A\simN(\mu,\;\sigma_1^2),\;B\simN(\mu,\sigma_2^2)A∼N(μ,σ12),B∼N(μ,σ22)是无法用k-means进行聚类的。密度估计新数据的生成原理我们认为数据空间是由某些高斯分布生成的,但对于某一具体的样
- Student‘s t分布
Wanderer001
工程数学计算机视觉
1.St(x|u,w,v)是由一个单变量高斯分布N(x|u,t^-1)和一个gamma分布Gam(t|a,b)相乘得到的分布函数。v=2a,w=a/b2.当v->无穷时,学生分布变为高斯分布,当接近1时,变为Cauchy分布。3.学生t分布具有很好的健壮性,这是由于在其概率密度函数中没有指数的限制,所以在有噪声数据的时候会显示很好的鲁棒性。
- 论文阅读笔记——FLOW MATCHING FOR GENERATIVE MODELING
寻丶幽风
Background论文阅读笔记流匹配扩散模型人工智能
FlowMatching论文扩散模型:根据中心极限定理,对原始图像不断加高斯噪声,最终将原始信号破坏为近似的标准正态分布。这其中每一步都构造为条件高斯分布,形成离散的马尔科夫链。再通过逐步去噪得到原始图像。Flowmatching采取直接将已知分布(如白噪声)转换为真实数据分布来生成数据,并且Flow是基于NormalizingFlow,故而是可微双射。生成过程中变化的概率密度构成一个集合,称为概
- 2D-surfel-gaussian 的安装和配置教程
贡沫苏Truman
2D-surfel-gaussian的安装和配置教程2D-surfel-gaussian项目地址:https://gitcode.com/gh_mirrors/2d/2D-surfel-gaussian1.项目的基础介绍和主要的编程语言2D-surfel-gaussian是一个开源项目,它主要用于2D图像的表面重建。该项目基于表面元素(surfel)的概念,使用高斯分布对图像中的边缘进行建模,进而
- 机器学习——数据可视化Matplotlib
小零呦
机器学习数据分析笔记机器学习可视化数据分析python
单一图表直方图直方图(Histogram)又称质量分布图,是一种统计报告图,由一系列高度不等的纵向条纹或线段表示数据的分布情况。一般用横轴表示数据类型,纵轴表示分布情况。直方图可以非常直观地展示每个属性的分布状况。通过图表可以很直观地看到数据是高斯分布、指数分布还是偏态分布。frompandasimportread_csvimportmatplotlib.pyplotaspltfilename='
- 【异常检测】极值理论(EVT)比正态分布好在哪?
TIM老师
异常检测极值理论
两者都是在计算概率,为什么有时会用极值理论(EVT)呢?正文:极值理论(EVT)与正态分布计算概率的核心区别在于:EVT专注于建模极端值(尾部事件)的分布特性,而正态分布更适合描述“典型”数据的集中趋势。以下是两者的对比及其在异常检测中的优势分析:一、正态分布的局限性正态分布(高斯分布)是统计学中最常用的分布之一,但其在异常检测中的局限性如下:1.尾部衰减过快正态分布的尾部衰减呈指数级(exp(
- 论文研读 | 解耦动态时空图神经网络交通预测
时空大数据小组
深度学习交通物流时序数据库
DecoupledDynamicSpatial-TemporalGraphNeuralNetworkforTrafficForecasting本文是由中科院大学2022年发表于VLDB会议的一篇文章,作者创新地提出了一种解耦时空框架——DSTF,提升了模型在交通流预测任务中的性能,并在两个真实数据集上进行了验证。作者通过将先验知识融合进模型结构中,从而提升模型性能的思路值得借鉴,以下对论文进行分享
- 【时空图神经网络 & 交通】相关模型2:STSGCN | 时空同步图卷积网络 | 空间相关性,时间相关性,空间-时间异质性
追光者♂
百题千解计划(项目实战案例)STSGCN空间-时间同步图卷积模块STSGCM深度学习人工智能Traffic空间-时间异质性
注:仅学习使用~前情提要:【时空图神经网络&交通】相关模型1:STGCN|完全卷积结构,高效的图卷积近似,瓶颈策略|时间门控卷积层:GLU(GatedLinearUnit),一种特殊的非线性门控单元目录STSGCN-2020年1.1背景1.2模型1.2.1问题背景:现有模型存在的问题1.2.2模型1.3问答Q1:STSGCM补充:构造局部时空图的方式(LocalizedSpatial-Tempor
- jdk tomcat 环境变量配置
Array_06
javajdktomcat
Win7 下如何配置java环境变量
1。准备jdk包,win7系统,tomcat安装包(均上网下载即可)
2。进行对jdk的安装,尽量为默认路径(但要记住啊!!以防以后配置用。。。)
3。分别配置高级环境变量。
电脑-->右击属性-->高级环境变量-->环境变量。
分别配置 :
path
&nbs
- Spring调SDK包报java.lang.NoSuchFieldError错误
bijian1013
javaspring
在工作中调另一个系统的SDK包,出现如下java.lang.NoSuchFieldError错误。
org.springframework.web.util.NestedServletException: Handler processing failed; nested exception is java.l
- LeetCode[位运算] - #136 数组中的单一数
Cwind
java题解位运算LeetCodeAlgorithm
原题链接:#136 Single Number
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现两次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
题目限定了线性的时间复杂度,同时不使用额外的空间,即要求只遍历数组一遍得出结果。由于异或运算 n XOR n = 0, n XOR 0 = n,故将数组中的每个元素进
- qq登陆界面开发
15700786134
qq
今天我们来开发一个qq登陆界面,首先写一个界面程序,一个界面首先是一个Frame对象,即是一个窗体。然后在这个窗体上放置其他组件。代码如下:
public class First { public void initul(){ jf=ne
- Linux的程序包管理器RPM
被触发
linux
在早期我们使用源代码的方式来安装软件时,都需要先把源程序代码编译成可执行的二进制安装程序,然后进行安装。这就意味着每次安装软件都需要经过预处理-->编译-->汇编-->链接-->生成安装文件--> 安装,这个复杂而艰辛的过程。为简化安装步骤,便于广大用户的安装部署程序,程序提供商就在特定的系统上面编译好相关程序的安装文件并进行打包,提供给大家下载,我们只需要根据自己的
- socket通信遇到EOFException
肆无忌惮_
EOFException
java.io.EOFException
at java.io.ObjectInputStream$PeekInputStream.readFully(ObjectInputStream.java:2281)
at java.io.ObjectInputStream$BlockDataInputStream.readShort(ObjectInputStream.java:
- 基于spring的web项目定时操作
知了ing
javaWeb
废话不多说,直接上代码,很简单 配置一下项目启动就行
1,web.xml
<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="h
- 树形结构的数据库表Schema设计
矮蛋蛋
schema
原文地址:
http://blog.csdn.net/MONKEY_D_MENG/article/details/6647488
程序设计过程中,我们常常用树形结构来表征某些数据的关联关系,如企业上下级部门、栏目结构、商品分类等等,通常而言,这些树状结构需要借助于数据库完成持久化。然而目前的各种基于关系的数据库,都是以二维表的形式记录存储数据信息,
- maven将jar包和源码一起打包到本地仓库
alleni123
maven
http://stackoverflow.com/questions/4031987/how-to-upload-sources-to-local-maven-repository
<project>
...
<build>
<plugins>
<plugin>
<groupI
- java IO操作 与 File 获取文件或文件夹的大小,可读,等属性!!!
百合不是茶
类 File
File是指文件和目录路径名的抽象表示形式。
1,何为文件:
标准文件(txt doc mp3...)
目录文件(文件夹)
虚拟内存文件
2,File类中有可以创建文件的 createNewFile()方法,在创建新文件的时候需要try{} catch(){}因为可能会抛出异常;也有可以判断文件是否是一个标准文件的方法isFile();这些防抖都
- Spring注入有继承关系的类(2)
bijian1013
javaspring
被注入类的父类有相应的属性,Spring可以直接注入相应的属性,如下所例:1.AClass类
package com.bijian.spring.test4;
public class AClass {
private String a;
private String b;
public String getA() {
retu
- 30岁转型期你能否成为成功人士
bijian1013
成长励志
很多人由于年轻时走了弯路,到了30岁一事无成,这样的例子大有人在。但同样也有一些人,整个职业生涯都发展得很优秀,到了30岁已经成为职场的精英阶层。由于做猎头的原因,我们接触很多30岁左右的经理人,发现他们在职业发展道路上往往有很多致命的问题。在30岁之前,他们的职业生涯表现很优秀,但从30岁到40岁这一段,很多人
- 【Velocity四】Velocity与Java互操作
bit1129
velocity
Velocity出现的目的用于简化基于MVC的web应用开发,用于替代JSP标签技术,那么Velocity如何访问Java代码.本篇继续以Velocity三http://bit1129.iteye.com/blog/2106142中的例子为基础,
POJO
package com.tom.servlets;
public
- 【Hive十一】Hive数据倾斜优化
bit1129
hive
什么是Hive数据倾斜问题
操作:join,group by,count distinct
现象:任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成;查看未完成的子任务,可以看到本地读写数据量积累非常大,通常超过10GB可以认定为发生数据倾斜。
原因:key分布不均匀
倾斜度衡量:平均记录数超过50w且
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua csrf
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-3.求子数组的最大和
bylijinnan
java
package beautyOfCoding;
public class MaxSubArraySum {
/**
* 3.求子数组的最大和
题目描述:
输入一个整形数组,数组里有正数也有负数。
数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。
求所有子数组的和的最大值。要求时间复杂度为O(n)。
例如输入的数组为1, -2, 3, 10, -4,
- Netty源码学习-FileRegion
bylijinnan
javanetty
今天看org.jboss.netty.example.http.file.HttpStaticFileServerHandler.java
可以直接往channel里面写入一个FileRegion对象,而不需要相应的encoder:
//pipeline(没有诸如“FileRegionEncoder”的handler):
public ChannelPipeline ge
- 使用ZeroClipboard解决跨浏览器复制到剪贴板的问题
cngolon
跨浏览器复制到粘贴板Zero Clipboard
Zero Clipboard的实现原理
Zero Clipboard 利用透明的Flash让其漂浮在复制按钮之上,这样其实点击的不是按钮而是 Flash ,这样将需要的内容传入Flash,再通过Flash的复制功能把传入的内容复制到剪贴板。
Zero Clipboard的安装方法
首先需要下载 Zero Clipboard的压缩包,解压后把文件夹中两个文件:ZeroClipboard.js
- 单例模式
cuishikuan
单例模式
第一种(懒汉,线程不安全):
public class Singleton { 2 private static Singleton instance; 3 pri
- spring+websocket的使用
dalan_123
一、spring配置文件
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.or
- 细节问题:ZEROFILL的用法范围。
dcj3sjt126com
mysql
1、zerofill把月份中的一位数字比如1,2,3等加前导0
mysql> CREATE TABLE t1 (year YEAR(4), month INT(2) UNSIGNED ZEROFILL, -> day
- Android开发10——Activity的跳转与传值
dcj3sjt126com
Android开发
Activity跳转与传值,主要是通过Intent类,Intent的作用是激活组件和附带数据。
一、Activity跳转
方法一Intent intent = new Intent(A.this, B.class); startActivity(intent)
方法二Intent intent = new Intent();intent.setCla
- jdbc 得到表结构、主键
eksliang
jdbc 得到表结构、主键
转自博客:http://blog.csdn.net/ocean1010/article/details/7266042
假设有个con DatabaseMetaData dbmd = con.getMetaData(); rs = dbmd.getColumns(con.getCatalog(), schema, tableName, null); rs.getSt
- Android 应用程序开关GPS
gqdy365
android
要在应用程序中操作GPS开关需要权限:
<uses-permission android:name="android.permission.WRITE_SECURE_SETTINGS" />
但在配置文件中添加此权限之后会报错,无法再eclipse里面正常编译,怎么办?
1、方法一:将项目放到Android源码中编译;
2、方法二:网上有人说cl
- Windows上调试MapReduce
zhiquanliu
mapreduce
1.下载hadoop2x-eclipse-plugin https://github.com/winghc/hadoop2x-eclipse-plugin.git 把 hadoop2.6.0-eclipse-plugin.jar 放到eclipse plugin 目录中。 2.下载 hadoop2.6_x64_.zip http://dl.iteye.com/topics/download/d2b
- 如何看待一些知名博客推广软文的行为?
justjavac
博客
本文来自我在知乎上的一个回答:http://www.zhihu.com/question/23431810/answer/24588621
互联网上的两种典型心态:
当初求种像条狗,如今撸完嫌人丑
当初搜贴像条犬,如今读完嫌人软
你为啥感觉不舒服呢?
难道非得要作者把自己的劳动成果免费给你用,你才舒服?
就如同 Google 关闭了 Gooled Reader,那是
- sql优化总结
macroli
sql
为了是自己对sql优化有更好的原则性,在这里做一下总结,个人原则如有不对请多多指教。谢谢!
要知道一个简单的sql语句执行效率,就要有查看方式,一遍更好的进行优化。
一、简单的统计语句执行时间
declare @d datetime ---定义一个datetime的变量set @d=getdate() ---获取查询语句开始前的时间select user_id
- Linux Oracle中常遇到的一些问题及命令总结
超声波
oraclelinux
1.linux更改主机名
(1)#hostname oracledb 临时修改主机名
(2) vi /etc/sysconfig/network 修改hostname
(3) vi /etc/hosts 修改IP对应的主机名
2.linux重启oracle实例及监听的各种方法
(注意操作的顺序应该是先监听,后数据库实例)
&nbs
- hive函数大全及使用示例
superlxw1234
hadoophive函数
具体说明及示例参 见附件文档。
文档目录:
目录
一、关系运算: 4
1. 等值比较: = 4
2. 不等值比较: <> 4
3. 小于比较: < 4
4. 小于等于比较: <= 4
5. 大于比较: > 5
6. 大于等于比较: >= 5
7. 空值判断: IS NULL 5
- Spring 4.2新特性-使用@Order调整配置类加载顺序
wiselyman
spring 4
4.1 @Order
Spring 4.2 利用@Order控制配置类的加载顺序
4.2 演示
两个演示bean
package com.wisely.spring4_2.order;
public class Demo1Service {
}
package com.wisely.spring4_2.order;
public class