- 【Gaussian Model】高斯分布模型
HP-Succinum
机器学习机器学习算法人工智能
目录高斯分布模型用于异常检测(GaussianModelforAnomalyDetection)1.高斯分布简介2.高斯分布模型用于异常检测(1)训练阶段:估计数据分布(2)检测阶段:计算概率判断异常点3.示例代码4.高斯分布异常检测的优缺点优点缺点5.适用场景6.结论高斯分布模型用于异常检测(GaussianModelforAnomalyDetection)在数据分析和机器学习任务中,异常检测(
- 图神经网络实战(9)——GraphSAGE详解与实现
盼小辉丶
图神经网络从入门到项目实战图神经网络GNNpytorch
图神经网络实战(9)——GraphSAGE详解与实现0.前言1.GraphSAGE原理1.1邻居采样1.2聚合2.构建GraphSAGE模型执行节点分类2.1数据集分析2.2构建GraphSAGE模型3.PinSAGE小结系列链接0.前言GraphSAGE是专为处理大规模图而设计的图神经网络(GraphNeuralNetworks,GNN)架构。在科技行业,可扩展性是推动系统增长的关键驱动力。因此
- A Bayesian Angular Superresolution Method With Lognormal Constraint for Sea-Surface Target 论文阅读
青铜锁00
论文阅读Radar论文阅读
目录1.研究背景与问题2.方法创新3.关键优势4.实验验证5.与传统方法对比6.结论与意义1.研究背景与问题核心挑战:实孔径雷达受限于天线孔径尺寸,导致角分辨率不足,影响海面目标(如船舶)的精细化探测。传统方法局限性:谱估计方法(如MUSIC、IAA):依赖多快拍数据,机械扫描雷达难以满足。正则化方法(如TSVD、l1/l2约束):假设噪声服从高斯分布,未考虑海杂波的非高斯特性(如Rayleigh
- 机器学习AI/ML/CV/NLP/GNN算法公式汇总Latex代码
rockingdingo
tensorflow大数据自然语言处理算法深度学习机器学习
图学习和LinkPrediction任务KnowledgeGraphLinkPredictionEquationsAndLatexCodehttp://www.deepnlp.org/blog/knowledge-graph-link-prediction小样本学习和零样本学习公式的Latex代Few-ShotLearningAndZero-ShotLearningEquationsLatexCo
- 大模型专栏博文汇总和索引
Donvink
大模型transformer深度学习人工智能语言模型
大模型专栏主要是汇总了我在学习大模型相关技术期间所做的一些总结和笔记,主要包括以下几个子专栏:DeepSeek-R1AIGC大模型实践Transformer多模态系统视频理解对比学习目标检测目标跟踪图神经网络大模型专栏汇总了以上所有子专栏的论文,目前暂时先按照不同的技术领域划分子专栏,子专栏之间的内容可能会有交集,不完全是独立的。为了方便查阅相关模块的内容,故以此文章进行汇总与索引。一、DeepS
- 图神经网络:拓扑数据分析的新时代
Jason_Orton
神经网络数据分析人工智能
随着图数据的广泛应用,图神经网络(GraphNeuralNetwork,GNN)作为一种强大的深度学习工具,逐渐成为机器学习领域中的一颗新星。图数据在许多现实世界问题中无处不在,诸如社交网络、交通网络、分子结构、推荐系统等都可以被建模为图结构。图神经网络通过直接处理图结构数据,能够更好地捕捉节点之间的关系信息,从而在众多任务中展现出了优异的性能。本文将深入探讨图神经网络的基本原理、常见的算法、应用
- DeepSeek 高阶应用技术详解(4)
Evaporator Core
#DeepSeek快速入门DeepSeek进阶开发与应用deepseek
1.引言在前三篇中,我们探讨了DeepSeek的基础功能、分布式训练、模型优化、模型解释性、超参数优化以及AutoML的应用。本篇将深入探讨DeepSeek在时间序列分析、图神经网络(GNN)和推荐系统中的应用。这些领域是深度学习的前沿方向,具有广泛的实际应用价值。2.DeepSeek在时间序列分析中的应用2.1时间序列分析简介时间序列分析是处理时间相关数据的重要技术,广泛应用于金融、气象、医疗等
- Windows环境安装torch_geometric库报错
一穷二白到年薪百万
报错专栏pythonanacondapip
Windows下安装,最近在学习图神经网络需要用到geometric_torch结果怎么装都装不上。查阅了各种资料尝试了各种方法,有的说是因为visualc++buildtools没有安装博客链接,有的说升级conda甚至还有的说卸载pytorch重装命,令行如下:condaupdate#升级conda所有的包官网下载地址:https://pypi.org/project/torch-geom
- 机器学习的数学基础(三)——概率与信息论
梦醒沉醉
数学基础概率论信息论
目录1.随机变量2.概率分布2.1离散型变量和概率质量函数2.2连续型变量和概率密度函数3.边缘概率4.条件概率5.条件概率的链式法则6.独立性和条件独立性7.期望、方差和协方差7.1期望7.2方差7.3协方差8.常用概率分布8.1均匀分布U(a,b)U(a,b)U(a,b)8.2Bernoulli分布8.3Multinoulli分布8.4高斯分布(正态分布)N(x;μ,σ2)N(x;\mu,\s
- 腿足机器人之五- 粒子滤波
shichaog
腿足机器人机器人
腿足机器人之五粒子滤波直方图滤波粒子滤波上一篇博客使用的是高斯分布结合贝叶斯准则来估计机器人状态,本篇是基于直方图和粒子滤波器这两种无参滤波器估计机器人状态。直方图方法将状态空间分解成有限多个区域,并用直方图表示后验概率。直方图为每个区域分配一个单独的累积概率;可以将其视为对连续密度函数的逐段常数近似。第二种技术通过有限多个样本来表示后验概率。由此产生的滤波器被称为粒子滤波器,在某些机器人问题中获
- OpenCV的卡尔曼滤波器:实现和应用
雪域Code
opencv人工智能计算机视觉C/C++
OpenCV的卡尔曼滤波器:实现和应用卡尔曼滤波器(Kalmanfilter)是一种最优估计的算法,在众多领域有着广泛的应用,如控制系统、通信系统、机器人等。OpenCV作为一个计算机视觉库,也提供了对卡尔曼滤波器的支持。本文将介绍OpenCV中卡尔曼滤波器的基本原理、实现方法以及在图像处理中的应用。一、卡尔曼滤波器简介卡尔曼滤波器是一种用于状态估计和信号滤波的算法,主要针对线性、高斯分布的系统。
- 字节跳动实习生和校招生内推
飞300
pythonjavascriptphp业界资讯算法
机器学习算法实习生-平台治理1、2026届硕士及以上学位在读,计算机等相关专业优先;2、有扎实的代码能力,熟悉深度学习/图神经网络/机器学习框架,如Pytorch、Tensorflow、DGL、Pyg、Sklearn等;3、熟悉机器学习/图学习/序列学习算法中的一项或者多项,如图建模、时序信号建模、节点/子图分类、社区挖掘、表征学习、自监督/半监督学习等,有一定深度和广度;4、熟悉相关算法在数据挖
- DeepSeek图神经网络(Graph Neural Networks, GNNs)基础与实践
Evaporator Core
Python开发经验深度学习DeepSeek快速入门神经网络人工智能深度学习
图神经网络(GraphNeuralNetworks,GNNs)是一种专门用于处理图结构数据的深度学习模型。与传统的神经网络不同,GNNs能够捕捉节点之间的关系和图的全局结构,广泛应用于社交网络分析、推荐系统、化学分子建模等领域。DeepSeek提供了强大的工具和API,帮助我们高效地构建和训练图神经网络。本文将详细介绍如何使用DeepSeek进行图神经网络的基础与实践,并通过代码示例帮助你掌握这些
- NeRF与3D Gaussian的异同对比
zllz0907
视觉SLAMNeRF与3DGS3d人工智能深度学习
NeRF(NeuralRadianceFields)和3DGaussianSplatting是两种不同的3D场景表示与渲染技术,分属两个派系。那他两有啥区别呢?核心区别在于场景的表示方式、优化目标及渲染效率。1.核心区别特性NeRF3DGaussianSplatting表示方式隐式表示:通过神经网络(MLP)学习场景的辐射场(颜色和密度)。显式表示:用3D高斯分布显式建模场景中的点云或粒子。优化目
- 基于PyG搭建GCN-LSTM时空犯罪预测
职业摸鱼能手
python深度学习机器学习
基于PyG搭建GCN-LSTM时空犯罪预测1.前言最近针对犯罪时空预测、犯罪分布可视化开展研究,图神经网络是必不可少的研究工具之一,为了记录学习PyG的过程,本文通过结合官网案例(非常晦涩难懂)以及网上各位大佬的学习过程,撰写此文章,以此记录学习过程,以防后面遗忘,如有错误请嘴下留情。2.PyG安装过程以及需要的包此处省略安装过程3.数据描述本文采用的是美国纽约州的犯罪数据,具体可视化如图所示:数
- 图神经网络实战(8)——图注意力网络(Graph Attention Networks, GAT)
盼小辉丶
图神经网络从入门到项目实战图神经网络pytorch图注意力网络GNN
图神经网络实战(8)——图注意力网络0.前言1.图注意力层原理1.1线性变换1.2激活函数1.3Softmax归一化1.4多头注意力1.5改进图注意力层2.使用NumPy中实现图注意力层3.使用PyTorchGeometric实现GAT3.1在Cora数据集上训练GAT模型3.2在CiteSeer数据集上训练GAT模型3.3误差分析小结系列链接0.前言图注意力网络(GraphAttentionNe
- 动手学图神经网络(12):MovieLens上的链接回归
段智华
图神经网络图神经网络
MovieLens上的链接回归在MovieLens数据集上进行评分预测的实践过程,包括数据处理、模型构建、训练以及评估等步骤,预测用户对电影的评分(即边的属性值)。环境设置使用pip安装pyg-lib、pytorch_geometric、sentence_transformers、fuzzywuzzy、captum等。importtorchprint(torch.__version__)impor
- 深度学习学习笔记 --- 动量momentum
杨鑫newlfe
MachineLearning深度学习动量momentum梯度下降
一、动量momentum的由来训练网络时,通常先对网络的初始值按照某种分布进行初始化,如:高斯分布。初始化权值操作对最终的网络性能影响比较大,合适的网络初始权值操作能够使损失函数在训练过程中收敛速度快,从而获得更好的优化结果。但是按照分布随机初始化网络权值时,存在一些不确定的因素,并不能保证每一次初始化操作都能使得网络的初始值处在一个合理的状态。不恰当的初始权值可能使网络的损失函数在训练过程中先去
- 用python绘制kde模型
若木胡
python开发语言
以下是使用Python绘制核密度估计(KernelDensityEstimation,KDE)模型的完整示例代码和说明:方法1:使用Seaborn快速绘制importnumpyasnpimportmatplotlib.pyplotaspltimportseabornassns#生成示例数据(混合高斯分布)data=np.concatenate([np.random.normal(0,1,500),
- 【论文笔记】基于图神经网络的多视角视觉重定位 GRNet CVPR 2020 论文笔记
phy12321
相机重定位
GRNet:LearningMulti-viewCameraRelocalizationwithGraphNeuralNetworks驭势科技,北京大学机器感知重点实验室,北京长城航空测控技术研究所本文提出了一种使用多视角图像进行相机重定位的图神经网络。该网络可以使得不连续帧之间进行信息传递,相比于只能在相邻前后帧之间进行信息传递的序列输入和LTSM,其能捕获更多视角信息以进行重定位。因此LSTM
- 图神经网络实战(2)——图论基础
盼小辉丶
图神经网络从入门到项目实战神经网络图论图神经网络GNN
图神经网络实战(2)——图论基础0.前言1.图属性1.1有向图和无向图1.2加权图和非加权图1.3连通图和非连通图1.4其它图类型2.图概念2.1基本对象2.2图的度量指标2.2邻接矩阵表示法3.图算法3.1广度优先搜索3.2深度优先搜索小结系列链接0.前言图论(Graphtheory)是数学的一个基本分支,涉及对图研究。图是复杂数据结构的可视化表示,有助于理解不同实体之间的关系。图论提供了大量建
- <深入浅出图神经网络> 读书笔记
数学工具构造器
GNN
文章目录笔记GNN代码chapter5|GCN分析TODO改代码得到的结论chapter6|GraphSage分析TODO去今年刚出就买了.一查豆瓣评分比我想的还低(我这种小白都能看出一些错误),有1说1对于入门还是可以的,至少能知道GNN大概的发展路线,如图卷积→\rightarrow→GCN→\rightarrow→GNN等.如果小白直接上手GNN啥的,连图滤波,空域频域等概念都不知道,也只能
- 跨平台物联网漏洞挖掘算法评估框架设计与实现文献综述之GMN
XLYcmy
漏洞挖掘物联网网络安全漏洞挖掘跨架构静态检测图神经网络项目报告
2.4Gemini和GMN我们采用了两种方式:Gemini和GMN。2.4.2GMN图神经网络(GraphNeuralNetworks-GNNs)是一种用于学习结构化数据及相关预测问题的方法。节点的表示被用于节点分类或生成图向量再用于分类。GMN模型针对图的相似性学习问题,提出了一种使用GNNs将图嵌入到向量空间,并通过交叉图注意机制来计算相似度分数以关联图之间的相似性的模型。GMN模型不是独立地
- 深度学习中高斯噪声:为什么以及如何使用
小白学视觉
深度学习人工智能
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达来源:DeepHubIMBA本文约1800字,建议阅读8分钟高斯噪声是深度学习中用于为输入数据或权重添加随机性的一种技术。在数学上,高斯噪声是一种通过向输入数据添加均值为零和标准差(σ)的正态分布随机值而产生的噪声。正态分布,也称为高斯分布,是一种连续概率分布,由其概率密度函数(PDF)定义:pdf(x)=(1/(σ*sqrt(
- 图神经网络系列论文阅读DAY1:《Predicting Tweet Engagement with Graph Neural Networks》
feifeikon
神经网络论文阅读人工智能
摘要翻译:社交网络是全球范围内分享内容的重要在线渠道之一。在这种背景下,预测一篇帖子在互动方面是否会产生影响,对于推动这些媒体的盈利利用至关重要。在现有研究中,许多方法通过利用帖子的直接特征来解决这一问题,这些特征通常与文本内容以及发布该帖子的用户相关。在本文中,我们认为互动的增加还与另一个关键因素相关,即社交媒体用户发布的帖子之间的语义关联。因此,我们提出了一种基于图神经网络(GraphNeur
- AI需要的基础数学知识
大囚长
机器学习大模型人工智能
AI(人工智能)涉及多个数学领域,以下是主要的基础数学知识:1.线性代数矩阵与向量:用于表示数据和模型参数。矩阵乘法:用于神经网络的前向传播。特征值与特征向量:用于降维和主成分分析(PCA)。奇异值分解(SVD):用于数据压缩和降维。2.微积分导数与偏导数:用于优化算法(如梯度下降)。链式法则:用于反向传播算法。积分:在概率和统计中有应用。3.概率与统计概率分布:如高斯分布、伯努利分布等。贝叶斯定
- 高斯混合模型(GMM):用“高斯家族”描绘数据的“模样”
ningaiiii
机器学习与深度学习机器学习人工智能
高斯混合模型(GMM):用“高斯家族”描绘数据的“模样”1.引言高斯混合模型(GaussianMixtureModel,GMM)是一种基于概率密度的生成式模型。它的核心思想是用多个“高斯分布”(即正态分布)的加权组合来描述数据的分布。GMM就像是一个“画家”,用不同的“高斯画笔”描绘出数据的“模样”,特别适合处理复杂的分类任务。2.算法原理2.1模型结构GMM的核心组成包括:混合权重:每个高斯分量
- IGModel——提高基于 GNN与Attention 机制的方法在药物发现中的实用性
Jackie_AI
计算机视觉stablediffusion自然语言处理语言模型Imagen
IGModel——提高基于GNN与Attention机制的方法在药物发现中的实用性导言深度学习在药物发现(发现治疗药物)领域的应用以及传统方法面临的挑战。药物(尤其是我们将在本文中讨论的被称为抑制剂的药物)通过与在人体中发挥不良功能的蛋白质结合并改变这些蛋白质的功能来发挥治疗效果。因此,在设计药物时,必须优化这些结合的亲和力和药理特性,并准确预测蛋白质与药物之间的相互作用。近年来,人们尤其提倡使用
- arXiv综述论文“Graph Neural Networks: A Review of Methods and Applications”
硅谷秋水
自动驾驶
arXiv于2019年7月10日上载的GNN综述论文“GraphNeuralNetworks:AReviewofMethodsandApplications“。摘要:许多学习任务需要处理图数据,该图数据包含元素之间的丰富关系信息。建模物理系统、学习分子指纹、预测蛋白质界面以及对疾病进行分类都需要一个模型从图输入学习。在其他如文本和图像之类非结构数据学习的领域中,对提取的结构推理,例如句子的依存关系
- PHP中使用grpc服务的教程详解
Oona_01
phpandroid开发语言
这篇文章主要为大家详细介绍了PHP中使用grpc服务的教程相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下grpc是通过定义服务端和客户端的代码来实现的通信的。但是要实现通信,还是要将其方法包装为一个http请求,除非你把grpc的服务端代码放在本地的端口上。grpc是面对微服务框架而风生水起的,上次我用python编写了一个图神经网络处理的微服务,使用grpc放在我的服务
- jdk tomcat 环境变量配置
Array_06
javajdktomcat
Win7 下如何配置java环境变量
1。准备jdk包,win7系统,tomcat安装包(均上网下载即可)
2。进行对jdk的安装,尽量为默认路径(但要记住啊!!以防以后配置用。。。)
3。分别配置高级环境变量。
电脑-->右击属性-->高级环境变量-->环境变量。
分别配置 :
path
&nbs
- Spring调SDK包报java.lang.NoSuchFieldError错误
bijian1013
javaspring
在工作中调另一个系统的SDK包,出现如下java.lang.NoSuchFieldError错误。
org.springframework.web.util.NestedServletException: Handler processing failed; nested exception is java.l
- LeetCode[位运算] - #136 数组中的单一数
Cwind
java题解位运算LeetCodeAlgorithm
原题链接:#136 Single Number
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现两次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
题目限定了线性的时间复杂度,同时不使用额外的空间,即要求只遍历数组一遍得出结果。由于异或运算 n XOR n = 0, n XOR 0 = n,故将数组中的每个元素进
- qq登陆界面开发
15700786134
qq
今天我们来开发一个qq登陆界面,首先写一个界面程序,一个界面首先是一个Frame对象,即是一个窗体。然后在这个窗体上放置其他组件。代码如下:
public class First { public void initul(){ jf=ne
- Linux的程序包管理器RPM
被触发
linux
在早期我们使用源代码的方式来安装软件时,都需要先把源程序代码编译成可执行的二进制安装程序,然后进行安装。这就意味着每次安装软件都需要经过预处理-->编译-->汇编-->链接-->生成安装文件--> 安装,这个复杂而艰辛的过程。为简化安装步骤,便于广大用户的安装部署程序,程序提供商就在特定的系统上面编译好相关程序的安装文件并进行打包,提供给大家下载,我们只需要根据自己的
- socket通信遇到EOFException
肆无忌惮_
EOFException
java.io.EOFException
at java.io.ObjectInputStream$PeekInputStream.readFully(ObjectInputStream.java:2281)
at java.io.ObjectInputStream$BlockDataInputStream.readShort(ObjectInputStream.java:
- 基于spring的web项目定时操作
知了ing
javaWeb
废话不多说,直接上代码,很简单 配置一下项目启动就行
1,web.xml
<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="h
- 树形结构的数据库表Schema设计
矮蛋蛋
schema
原文地址:
http://blog.csdn.net/MONKEY_D_MENG/article/details/6647488
程序设计过程中,我们常常用树形结构来表征某些数据的关联关系,如企业上下级部门、栏目结构、商品分类等等,通常而言,这些树状结构需要借助于数据库完成持久化。然而目前的各种基于关系的数据库,都是以二维表的形式记录存储数据信息,
- maven将jar包和源码一起打包到本地仓库
alleni123
maven
http://stackoverflow.com/questions/4031987/how-to-upload-sources-to-local-maven-repository
<project>
...
<build>
<plugins>
<plugin>
<groupI
- java IO操作 与 File 获取文件或文件夹的大小,可读,等属性!!!
百合不是茶
类 File
File是指文件和目录路径名的抽象表示形式。
1,何为文件:
标准文件(txt doc mp3...)
目录文件(文件夹)
虚拟内存文件
2,File类中有可以创建文件的 createNewFile()方法,在创建新文件的时候需要try{} catch(){}因为可能会抛出异常;也有可以判断文件是否是一个标准文件的方法isFile();这些防抖都
- Spring注入有继承关系的类(2)
bijian1013
javaspring
被注入类的父类有相应的属性,Spring可以直接注入相应的属性,如下所例:1.AClass类
package com.bijian.spring.test4;
public class AClass {
private String a;
private String b;
public String getA() {
retu
- 30岁转型期你能否成为成功人士
bijian1013
成长励志
很多人由于年轻时走了弯路,到了30岁一事无成,这样的例子大有人在。但同样也有一些人,整个职业生涯都发展得很优秀,到了30岁已经成为职场的精英阶层。由于做猎头的原因,我们接触很多30岁左右的经理人,发现他们在职业发展道路上往往有很多致命的问题。在30岁之前,他们的职业生涯表现很优秀,但从30岁到40岁这一段,很多人
- 【Velocity四】Velocity与Java互操作
bit1129
velocity
Velocity出现的目的用于简化基于MVC的web应用开发,用于替代JSP标签技术,那么Velocity如何访问Java代码.本篇继续以Velocity三http://bit1129.iteye.com/blog/2106142中的例子为基础,
POJO
package com.tom.servlets;
public
- 【Hive十一】Hive数据倾斜优化
bit1129
hive
什么是Hive数据倾斜问题
操作:join,group by,count distinct
现象:任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成;查看未完成的子任务,可以看到本地读写数据量积累非常大,通常超过10GB可以认定为发生数据倾斜。
原因:key分布不均匀
倾斜度衡量:平均记录数超过50w且
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua csrf
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-3.求子数组的最大和
bylijinnan
java
package beautyOfCoding;
public class MaxSubArraySum {
/**
* 3.求子数组的最大和
题目描述:
输入一个整形数组,数组里有正数也有负数。
数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。
求所有子数组的和的最大值。要求时间复杂度为O(n)。
例如输入的数组为1, -2, 3, 10, -4,
- Netty源码学习-FileRegion
bylijinnan
javanetty
今天看org.jboss.netty.example.http.file.HttpStaticFileServerHandler.java
可以直接往channel里面写入一个FileRegion对象,而不需要相应的encoder:
//pipeline(没有诸如“FileRegionEncoder”的handler):
public ChannelPipeline ge
- 使用ZeroClipboard解决跨浏览器复制到剪贴板的问题
cngolon
跨浏览器复制到粘贴板Zero Clipboard
Zero Clipboard的实现原理
Zero Clipboard 利用透明的Flash让其漂浮在复制按钮之上,这样其实点击的不是按钮而是 Flash ,这样将需要的内容传入Flash,再通过Flash的复制功能把传入的内容复制到剪贴板。
Zero Clipboard的安装方法
首先需要下载 Zero Clipboard的压缩包,解压后把文件夹中两个文件:ZeroClipboard.js
- 单例模式
cuishikuan
单例模式
第一种(懒汉,线程不安全):
public class Singleton { 2 private static Singleton instance; 3 pri
- spring+websocket的使用
dalan_123
一、spring配置文件
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.or
- 细节问题:ZEROFILL的用法范围。
dcj3sjt126com
mysql
1、zerofill把月份中的一位数字比如1,2,3等加前导0
mysql> CREATE TABLE t1 (year YEAR(4), month INT(2) UNSIGNED ZEROFILL, -> day
- Android开发10——Activity的跳转与传值
dcj3sjt126com
Android开发
Activity跳转与传值,主要是通过Intent类,Intent的作用是激活组件和附带数据。
一、Activity跳转
方法一Intent intent = new Intent(A.this, B.class); startActivity(intent)
方法二Intent intent = new Intent();intent.setCla
- jdbc 得到表结构、主键
eksliang
jdbc 得到表结构、主键
转自博客:http://blog.csdn.net/ocean1010/article/details/7266042
假设有个con DatabaseMetaData dbmd = con.getMetaData(); rs = dbmd.getColumns(con.getCatalog(), schema, tableName, null); rs.getSt
- Android 应用程序开关GPS
gqdy365
android
要在应用程序中操作GPS开关需要权限:
<uses-permission android:name="android.permission.WRITE_SECURE_SETTINGS" />
但在配置文件中添加此权限之后会报错,无法再eclipse里面正常编译,怎么办?
1、方法一:将项目放到Android源码中编译;
2、方法二:网上有人说cl
- Windows上调试MapReduce
zhiquanliu
mapreduce
1.下载hadoop2x-eclipse-plugin https://github.com/winghc/hadoop2x-eclipse-plugin.git 把 hadoop2.6.0-eclipse-plugin.jar 放到eclipse plugin 目录中。 2.下载 hadoop2.6_x64_.zip http://dl.iteye.com/topics/download/d2b
- 如何看待一些知名博客推广软文的行为?
justjavac
博客
本文来自我在知乎上的一个回答:http://www.zhihu.com/question/23431810/answer/24588621
互联网上的两种典型心态:
当初求种像条狗,如今撸完嫌人丑
当初搜贴像条犬,如今读完嫌人软
你为啥感觉不舒服呢?
难道非得要作者把自己的劳动成果免费给你用,你才舒服?
就如同 Google 关闭了 Gooled Reader,那是
- sql优化总结
macroli
sql
为了是自己对sql优化有更好的原则性,在这里做一下总结,个人原则如有不对请多多指教。谢谢!
要知道一个简单的sql语句执行效率,就要有查看方式,一遍更好的进行优化。
一、简单的统计语句执行时间
declare @d datetime ---定义一个datetime的变量set @d=getdate() ---获取查询语句开始前的时间select user_id
- Linux Oracle中常遇到的一些问题及命令总结
超声波
oraclelinux
1.linux更改主机名
(1)#hostname oracledb 临时修改主机名
(2) vi /etc/sysconfig/network 修改hostname
(3) vi /etc/hosts 修改IP对应的主机名
2.linux重启oracle实例及监听的各种方法
(注意操作的顺序应该是先监听,后数据库实例)
&nbs
- hive函数大全及使用示例
superlxw1234
hadoophive函数
具体说明及示例参 见附件文档。
文档目录:
目录
一、关系运算: 4
1. 等值比较: = 4
2. 不等值比较: <> 4
3. 小于比较: < 4
4. 小于等于比较: <= 4
5. 大于比较: > 5
6. 大于等于比较: >= 5
7. 空值判断: IS NULL 5
- Spring 4.2新特性-使用@Order调整配置类加载顺序
wiselyman
spring 4
4.1 @Order
Spring 4.2 利用@Order控制配置类的加载顺序
4.2 演示
两个演示bean
package com.wisely.spring4_2.order;
public class Demo1Service {
}
package com.wisely.spring4_2.order;
public class