课程学习笔记,课程链接
Sequential 是一个时序容器。Modules 会以他们传入的顺序被添加到容器中。包含在 PyTorch 官网中 torch.nn 模块中的 Containers 中,在神经网络搭建的过程中如果使用 Sequential,代码更简洁。
搭建上述神经网络的具体代码如下。
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
class Jiaolong(nn.Module):
def __init__(self):
super(Jiaolong, self).__init__()
self.conv1 = Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2)
self.maxpool1 = MaxPool2d(kernel_size=2)
self.conv2 = Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2)
self.maxpool2 = MaxPool2d(kernel_size=2)
self.conv3 = Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2)
self.maxpool3 = MaxPool2d(kernel_size=2)
self.flatten = Flatten()
self.linear1 = Linear(1024, 64)
self.linear2 = Linear(64, 10)
def forward(self, x):
x = self.conv1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.maxpool2(x)
x = self.conv3(x)
x = self.maxpool3(x)
x = self.flatten(x)
x = self.linear1(x)
x = self.linear2(x)
return x
jiaolong = Jiaolong()
print(jiaolong)
input = torch.ones((64, 3, 32, 32)) # 指定数据创建的形状,都是1
output = jiaolong(input)
print(output.shape)
现以Sequential搭建上述一模一样的神经网络,并借助tensorboard显示计算图的具体信息。
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter
class Jiaolong(nn.Module):
def __init__(self):
super(Jiaolong, self).__init__()
self.model1 = Sequential(
Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2),
MaxPool2d(kernel_size=2),
Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2),
MaxPool2d(kernel_size=2),
Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2),
MaxPool2d(kernel_size=2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
jiaolong = Jiaolong()
# print(jiaolong)
input = torch.ones((64, 3, 32, 32)) # 指定数据创建的形状,都是1
output = jiaolong(input)
# print(output.shape)
writer = SummaryWriter("logs")
writer.add_graph(jiaolong, input) # 计算图
writer.close()
在 Tensorboard 中查看计算图结果如下: