【mobilenetv2 pytorch->onnx】pytorch分类模型导出onnx模型并验证

文章目录

  • 1 准备工作
    • 1.1 mobilenetv2网络介绍
    • 1.2 MobileNetV2训练分类数据集
  • 2 为何要转
  • 3 安装相关依赖
  • 4 转换过程
  • 5 检验生成的onnx模型
    • 5.1 onnx.checker检验
    • 5.2 np.testing.assert_allclose校验
    • 5.3 warning消除记录
    • 5.4 使用onnx测试一张图片校验
  • 6 整合到一起的代码

1 准备工作

1.1 mobilenetv2网络介绍

详见参考链接MobileNetV2网络结构详解并获取网络计算量与参数量。

1.2 MobileNetV2训练分类数据集

详见参考链接MobileNetV2训练自定义分类数据集。

2 为何要转

想部署在开发板上,通常需要先转成onnx形式。

3 安装相关依赖

其它的依赖在网络训练过程中通常都会遇到,用于转换的依赖安装:

pip install onnxruntime
pip install onnx

4 转换过程

需要准备的东西很少:
【mobilenetv2 pytorch->onnx】pytorch分类模型导出onnx模型并验证_第1张图片
model_convert_onnx.py代码如下,运行后可得到转换后的onnx模型:

import onnxruntime
import torch
import numpy as np
import onnx

# 导入网络结构
from model import mobilenet_v2 as create_model


def model_convert_onnx(model, input_shape, output_path):
    dummy_input = torch.randn(1, 3, input_shape[0], input_shape[1])
    input_names = ["input1"]
    output_names = ["output1"]         

    torch.onnx.export(
        model,
        dummy_input,
        output_path,
        verbose=True,
        keep_initializers_as_inputs=True,
        opset_version=11,       # 版本通常为10 or 11
        input_names=input_names,
        output_names=output_names,
    )

if __name__ == '__main__':
    # create model
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = create_model(num_classes=5).to(device)
    # load model weights
    model_weight_path = "./output/model-29.pth"
    model.load_state_dict(torch.load(model_weight_path, map_location=device))
    # 据说因为BN、dropout的存在,所以这儿要转成eval()模式
    model.eval()
    # 导出onnx模型的输入尺寸,要和pytorch模型的输入尺寸一致
    input_shape = (224, 224)        
    # onnx模型输出到哪里去
    output_path = './output/mobilenetv2.onnx'       

    # ------------------------------------------#
    #   pth模型转换为onnx模型,转换完成后,可注释掉
    # ------------------------------------------#
    model_convert_onnx(model, input_shape, output_path)
    print("model convert onnx finsh.")

5 检验生成的onnx模型

5.1 onnx.checker检验

通常这一步都没啥问题,要是有问题,当我没说。

import onnx

# -------------------------#
#   第一轮验证   
# -------------------------#
onnx_model = onnx.load(output_path)
onnx.checker.check_model(onnx_model)
print("onnx model check_1 finsh.")

5.2 np.testing.assert_allclose校验

直接看代码注释即可。

import onnxruntime
import torch
import numpy as np
import onnx

# 导入网络结构
from model import mobilenet_v2 as create_model

def check_onnx_2(model, ort_session, input_shape, device):
    # -----------------------------------#
    # 给个模型输入,分辨率要对
    # -----------------------------------#
    x = torch.randn(size=(1, 3, input_shape[0], input_shape[1]), dtype=torch.float32)
    
    # -----------------------------------#
    # torch模型推理
    # -----------------------------------#
    with torch.no_grad():
        torch_out = model(x.to(device))
    # print(torch_out)            # tensor([[-0.5728,  0.1695, -0.3256,  1.1357, -0.4081]])
    # print(type(torch_out))      # 

    # -----------------------------------#
    # onnx模型推理
    # -----------------------------------#
    ort_inputs = {ort_session.get_inputs()[0].name: x.numpy()}          # 初始化数据,注意这儿的x是上面的输入数据x,后期应该是img
    ort_outs = ort_session.run(None, ort_inputs)        # 推理得到输出
    # print(ort_outs)             # [array([[-0.5727689 ,  0.16947027, -0.32555276,  1.13574   , -0.40812433]], dtype=float32)]
    # print(type(ort_outs))       # ,里面是个numpy矩阵
    # print(type(ort_outs[0]))    # 
    ort_outs = ort_outs[0]        # 因此这儿需要把内部numpy矩阵取出来,这一步很有必要

    # print(torch_out.numpy().shape)      # (1, 5),1张图片,该图片属于5个类别的概率
    # print(ort_outs.shape)               # (1, 5)

    # ---------------------------------------------------------#
    # 比较实际值与期望值的差异,通过没啥事,不通过引发AssertionError
    # 这儿需要两个numpy输入
    # ---------------------------------------------------------#
    np.testing.assert_allclose(torch_out.numpy(), ort_outs, rtol=1e-03, atol=1e-05)  


if __name__ == '__main__':
    # create model
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = create_model(num_classes=5).to(device)
    # load model weights
    model_weight_path = "./output/model-29.pth"
    model.load_state_dict(torch.load(model_weight_path, map_location=device))
    # 据说因为BN、dropout的存在,所以这儿要转成eval()模式
    model.eval()
    # 导出onnx模型的输入尺寸,要和pytorch模型的输入尺寸一致
    input_shape = (224, 224)        
    # onnx模型输出到哪里去
    output_path = './output/mobilenetv2.onnx'       
    
    # -------------------------#
    #   第二轮验证   
    # -------------------------#
    # 初始化onnx模型
    ort_session_1 = onnxruntime.InferenceSession(output_path)   
    check_onnx_2(model, ort_session_1, input_shape, device)
    print("onnx model check_2 finsh.")

5.3 warning消除记录

[W:onnxruntime:, graph.cc:1237 onnxruntime::Graph::Graph] Initializer 893 appears in graph inputs and will not be treated as constant value/weight. This may prevent some of the graph optimizations, like const folding. Move it out of graph inputs if there is no need to override it, by either re-generating the model with latest exporter/converter or with the tool onnxruntime/tools/python/remove_initializer_from_input.py.

解决方案:
在得到的onnx模型文件夹下,新建remove_initializer_from_input.py,内容为:

import onnx
import argparse


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--input", required=True, help="input model")
    parser.add_argument("--output", required=True, help="output model")
    args = parser.parse_args()
    return args


def remove_initializer_from_input():
    args = get_args()

    model = onnx.load(args.input)
    if model.ir_version < 4:
        print(
            'Model with ir_version below 4 requires to include initilizer in graph input'
        )
        return

    inputs = model.graph.input
    name_to_input = {}
    for input in inputs:
        name_to_input[input.name] = input

    for initializer in model.graph.initializer:
        if initializer.name in name_to_input:
            inputs.remove(name_to_input[initializer.name])

    onnx.save(model, args.output)


if __name__ == '__main__':
    remove_initializer_from_input()

打开终端,运行python remove_initializer_from_input.py --input mobilenetv2.onnx --output mobilenetv2.onnx即可。
【mobilenetv2 pytorch->onnx】pytorch分类模型导出onnx模型并验证_第2张图片

5.4 使用onnx测试一张图片校验

使用onnx测试一张图片校验代码放在predict_origin_onnx.py中,注意:测试代码里面,不能涉及torch,torchvision这种包了。

import onnxruntime
import numpy as np
import onnx
import os
from PIL import Image
import matplotlib.pyplot as plt
import json

def softmax_2D(X):
    """
    针对二维numpy矩阵每一行进行softmax操作
    X: np.array. Probably should be floats.
    return: 二维矩阵
    """
    # looping through rows of X
    #   循环遍历X的行
    ps = np.empty(X.shape)
    for i in range(X.shape[0]):
        ps[i,:]  = np.exp(X[i,:])
        ps[i,:] /= np.sum(ps[i,:])
    return ps


def check_onnx_3(ort_session, img, json_path, input_shape):
    # ----------------------------------------------------------------#
    # 图像预处理,包括resize,归一化,减均值,除方差,HWC变为CHW,添加batch维度
    # ----------------------------------------------------------------#
    img = img.convert('RGB')
    img_resize = img.resize(input_shape, Image.BICUBIC)   # PIL.Image类型
    # PIL.Image类型无法直接除以255,需要先转成array
    img_resize = np.array(img_resize, dtype='float32') / 255.0
    img_resize -= [0.485, 0.456, 0.406]
    img_resize /= [0.229, 0.224, 0.225]
    img_CHW = np.transpose(img_resize, (2, 0, 1))
    # ---------------------------------------------------------#
    #   添加batch_size维度,缺少这个维度,网络没法预测
    # ---------------------------------------------------------#
    img = np.expand_dims(img_CHW, 0)

    # -----------------------------------#
    #   class_indict用于可视化类别
    # -----------------------------------#
    with open(json_path, "r") as f:
        class_indict = json.load(f)

    # -----------------------------------#
    # onnx模型推理
    # 初始化数据,注意此时img是numpy格式
    # -----------------------------------#
    ort_inputs = {ort_session.get_inputs()[0].name: img} 
    ort_outs = ort_session.run(None, ort_inputs)        # 推理得到输出
    # print(ort_outs)     # [array([[-4.290639  , -2.267056  ,  7.666328  , -1.4162455 ,  0.57391334]], dtype=float32)]
    
    # -----------------------------------#
    # 经过softmax转化为概率
    # softmax_2D按行转化,一行一个样本
    # -----------------------------------#
    predict_probability = softmax_2D(ort_outs[0])        
    # print(predict_probability)  # array([[0.1],[0.2],[0.3],[0.3],[0.1]])           
    
    # -----------------------------------#
    # argmax得到最大概率索引,也就是类别对应索引
    # -----------------------------------#
    predict_cla = np.argmax(predict_probability, axis=-1)
    # print(predict_cla)        # array([2])

    print_res = "class: {}   prob: {:.3}".format(class_indict[str(predict_cla[0])],
                                                 predict_probability[0][predict_cla[0]])
    plt.title(print_res)
    for i in range(len(predict_probability[0])):
        print("class: {:10}   prob: {:.3}".format(class_indict[str(i)],
                                                  predict_probability[0][i]))
    plt.show()

if __name__ == '__main__':
	output_path = './output/mobilenetv2.onnx'
    # -------------------------#
    #   第三轮验证   
    # -------------------------#
    # load image
    img_path = "./data/rose.jpg"
    assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
    img = Image.open(img_path)
    plt.imshow(img)
    # read class_indict
    json_path = './class_indices.json'
    # 加载onnx模型
    ort_session_2 = onnxruntime.InferenceSession(output_path)

    check_onnx_3(ort_session_2, img, json_path, input_shape)
    print("onnx model check_3 finsh.")

【mobilenetv2 pytorch->onnx】pytorch分类模型导出onnx模型并验证_第3张图片

6 整合到一起的代码

model_convert_onnx.py代码如下:

import onnxruntime
import torch
import numpy as np
import onnx

# 导入网络结构
from model import mobilenet_v2 as create_model


def model_convert_onnx(model, input_shape, output_path):
    dummy_input = torch.randn(1, 3, input_shape[0], input_shape[1])
    input_names = ["input1"]
    output_names = ["output1"]         

    torch.onnx.export(
        model,
        dummy_input,
        output_path,
        verbose=True,
        keep_initializers_as_inputs=True,
        opset_version=11,       # 版本通常为10 or 11
        input_names=input_names,
        output_names=output_names,
    )


def check_onnx_2(model, ort_session, input_shape, device):
    # -----------------------------------#
    # 给个模型输入,分辨率要对
    # -----------------------------------#
    x = torch.randn(size=(1, 3, input_shape[0], input_shape[1]), dtype=torch.float32)
    
    # -----------------------------------#
    # torch模型推理
    # -----------------------------------#
    with torch.no_grad():
        torch_out = model(x.to(device))
    # print(torch_out)            # tensor([[-0.5728,  0.1695, -0.3256,  1.1357, -0.4081]])
    # print(type(torch_out))      # 

    # -----------------------------------#
    # onnx模型推理
    # -----------------------------------#
    ort_inputs = {ort_session.get_inputs()[0].name: x.numpy()}          # 初始化数据,注意这儿的x是上面的输入数据x,后期应该是img
    ort_outs = ort_session.run(None, ort_inputs)        # 推理得到输出
    # print(ort_outs)             # [array([[-0.5727689 ,  0.16947027, -0.32555276,  1.13574   , -0.40812433]], dtype=float32)]
    # print(type(ort_outs))       # ,里面是个numpy矩阵
    # print(type(ort_outs[0]))    # 
    ort_outs = ort_outs[0]        # 因此这儿需要把内部numpy矩阵取出来,这一步很有必要

    # print(torch_out.numpy().shape)      # (1, 5),1张图片,该图片属于5个类别的概率
    # print(ort_outs.shape)               # (1, 5)

    # ---------------------------------------------------------#
    # 比较实际值与期望值的差异,通过没啥事,不通过引发AssertionError
    # 这儿需要两个numpy输入
    # ---------------------------------------------------------#
    np.testing.assert_allclose(torch_out.numpy(), ort_outs, rtol=1e-03, atol=1e-05)  


if __name__ == '__main__':
    # create model
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = create_model(num_classes=5).to(device)
    # load model weights
    model_weight_path = "./output/model-29.pth"
    model.load_state_dict(torch.load(model_weight_path, map_location=device))
    # 据说因为BN、dropout的存在,所以这儿要转成eval()模式
    model.eval()
    # 导出onnx模型的输入尺寸,要和pytorch模型的输入尺寸一致
    input_shape = (224, 224)        
    # onnx模型输出到哪里去
    output_path = './output/mobilenetv2.onnx'       

    # ------------------------------------------#
    #   pth模型转换为onnx模型,转换完成后,可注释掉
    # ------------------------------------------#
    model_convert_onnx(model, input_shape, output_path)
    print("model convert onnx finsh.")

    # -------------------------#
    #   第一轮验证   
    # -------------------------#
    onnx_model = onnx.load(output_path)
    onnx.checker.check_model(onnx_model)
    print("onnx model check_1 finsh.")

    # -------------------------#
    #   第二轮验证   
    # -------------------------#
    # 初始化onnx模型
    ort_session_1 = onnxruntime.InferenceSession(output_path)   
    check_onnx_2(model, ort_session_1, input_shape, device)
    print("onnx model check_2 finsh.")

你可能感兴趣的:(地平线开发板相关,pytorch,python,onnx,mobilenetv2)