Task06 BERT应用到下游任务、训练和优化

文章目录

  • 1 BERT-based Models
    • 1.1 BertForPreTraining
    • 1.2 BertForSeqence Classification
    • 1.3 BertFor MultipleChoice
    • 1.4 Bert For Token Classification
    • 1.5 BertForQuestionAnswering
  • 2 BERT训练和优化
    • 2.1 Pre - Training
    • 2.2 Fine-Tuning
      • 2.2.1 AdamW
      • 2.2.2 Warmup
  • 总结
  • 参考

1 BERT-based Models

1.1 BertForPreTraining

预训练的两个任务
Masked Language Model(MLM)
Next Sentence Prediction (NSP) ---->旨在训练模型理解预测句子间的关系

Task06 BERT应用到下游任务、训练和优化_第1张图片

@add_start_docstrings(
    """Bert Model with a `language modeling` head on top for CLM fine-tuning. """, BERT_START_DOCSTRING
)
class BertLMHeadModel(BertPreTrainedModel):

    _keys_to_ignore_on_load_unexpected = [r"pooler"]
    _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]

    def __init__(self, config):
        super().__init__(config)

        if not config.is_decoder:
            logger.warning("If you want to use `BertLMHeadModel` as a standalone, add `is_decoder=True.`")

        self.bert = BertModel(config, add_pooling_layer=False)
        self.cls = BertOnlyMLMHead(config)

        self.init_weights()

    def get_output_embeddings(self):
        return self.cls.predictions.decoder

    def set_output_embeddings(self, new_embeddings):
        self.cls.predictions.decoder = new_embeddings

    @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        labels=None,
        past_key_values=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        encoder_hidden_states  (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
            the model is configured as a decoder.
        encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
            the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
            ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
            ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
        past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
            Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
            If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
            (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
            instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
        use_cache (:obj:`bool`, `optional`):
            If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
            decoding (see :obj:`past_key_values`).
        Returns:
        Example::
            from transformers import BertTokenizer, BertLMHeadModel, BertConfig
            import torch
            tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
            config = BertConfig.from_pretrained("bert-base-cased")
            config.is_decoder = True
            model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
            inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
            outputs = model(**inputs)
            prediction_logits = outputs.logits
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        if labels is not None:
            use_cache = False

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]
        prediction_scores = self.cls(sequence_output)

        lm_loss = None
        if labels is not None:
            # we are doing next-token prediction; shift prediction scores and input ids by one
            shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
            labels = labels[:, 1:].contiguous()
            loss_fct = CrossEntropyLoss()
            lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (prediction_scores,) + outputs[2:]
            return ((lm_loss,) + output) if lm_loss is not None else output

        return CausalLMOutputWithCrossAttentions(
            loss=lm_loss,
            logits=prediction_scores,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )

    def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
        input_shape = input_ids.shape
        # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
        if attention_mask is None:
            attention_mask = input_ids.new_ones(input_shape)

        # cut decoder_input_ids if past is used
        if past is not None:
            input_ids = input_ids[:, -1:]

        return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past}

    def _reorder_cache(self, past, beam_idx):
        reordered_past = ()
        for layer_past in past:
            reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
        return reordered_past

from transformers import BertTokenizer, BertLMHeadModel, BertConfig
import torch
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
config = BertConfig.from_pretrained("bert-base-uncased")
config.is_decoder = True
model = BertLMHeadModel.from_pretrained('bert-base-uncased', config=config)
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
outputs = model(**inputs)
prediction_logits = outputs.logits

Fine-tune 模型 分类任务
Task06 BERT应用到下游任务、训练和优化_第2张图片

1.2 BertForSeqence Classification

可以用于句子分类 ( 也可以是回归) 任务

  • 句子分类作为输入 输出 ----> 单个分类标签
class BertForSequenceClassification(BertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.bert = BertModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()
        # ...
  • 如果初始化的num_labels = 1 那么默认为回归任务 ,使用MSELoss
  • 否则认为是分类任务

1.3 BertFor MultipleChoice

用于多项选择 这模型 如 RocStories/SWAG任务

  • 多项选择任务 : 输入<------ 一组分词输入的句子
    输出 ------> 为选择某一句子的单个标签

1.4 Bert For Token Classification

用于序列标注 (词分类) 如NER任务

  • 输入 <-----------为单个句子文本
  • 输出-------------> 每个token对应的类别标签

1.5 BertForQuestionAnswering

用于解决问答任务

  • 输入 <----------- 问题组成的句子对
  • 输出 -----------> 为起始位置和结束位置用于标出回答中的具体文本
@add_start_docstrings(
    """
    Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
    output) e.g. for GLUE tasks.
    """,
    BERT_START_DOCSTRING,
)
class BertForSequenceClassification(BertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config

        self.bert = BertModel(config)
        classifier_dropout = (
            config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(classifier_dropout)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

    @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=SequenceClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
            Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
            config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)
        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

2 BERT训练和优化

2.1 Pre - Training

所有实现的PLM的word embedding和masked language model 的预测权重在初始化过程中都是共享的

class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin):
    # ...
    def tie_weights(self):
        """
        Tie the weights between the input embeddings and the output embeddings.

        If the :obj:`torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning
        the weights instead.
        """
        output_embeddings = self.get_output_embeddings()
        if output_embeddings is not None and self.config.tie_word_embeddings:
            self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())

        if self.config.is_encoder_decoder and self.config.tie_encoder_decoder:
            if hasattr(self, self.base_model_prefix):
                self = getattr(self, self.base_model_prefix)
            self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix)
    # ...

2.2 Fine-Tuning

2.2.1 AdamW

用于修复Adam的权重衰减错误的新方法
Task06 BERT应用到下游任务、训练和优化_第3张图片

2.2.2 Warmup

在训练初期使用较小的学习率 在一定步数 内提高到正常大小

TYPE_TO_SCHEDULER_FUNCTION = {
    SchedulerType.LINEAR: get_linear_schedule_with_warmup,
    SchedulerType.COSINE: get_cosine_schedule_with_warmup,
    SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
    SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
    SchedulerType.CONSTANT: get_constant_schedule,
    SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
}

总结

感觉有点懵 [捂脸] 一圈下来知道很复杂 可以做问答 句子里的词分类

参考

Datawhale基于transformers的自然语言处理(NLP入门)

你可能感兴趣的:(#,bert,自然语言处理,pytorch)