- 人体坐姿检测系统开发实战(YOLOv8+PyTorch+可视化)
Loving_enjoy
计算机学科论文创新点人工智能深度学习迁移学习经验分享
本文将手把手教你构建智能坐姿检测系统,结合目标检测与姿态估计技术,实现不良坐姿的实时识别与预警###一、项目背景与价值现代人每天平均坐姿时间超过8小时,不良坐姿会导致:-脊椎压力增加300%-颈椎病发病率提升45%-腰椎间盘突出风险增加60%本系统通过计算机视觉技术实时监测坐姿状态,对驼背、侧倾、前倾等不良姿势进行智能识别和预警。相较于传统传感器方案,我们的视觉方案具有非接触、低成本、易部署的优势
- 【无人机/平衡车/机器人】详解STM32+MPU6050姿态解算—卡尔曼滤波+四元数法+互补滤波——附3个算法源码
1.卡尔曼滤波卡尔曼滤波是一种线性最优估计方法,用于估计动态系统的状态。在姿态解算中,我们可以使用卡尔曼滤波来融合陀螺仪和加速度计的数据,以获得更稳定的姿态估计。以下是一个简单的卡尔曼滤波器实现:```c#include"kalman.h"voidKalman_Init(Kalman_TypeDef*Kalman){Kalman->P[0][0]=1;Kalman->P[1][1]=1;Kalma
- 使用MATLAB和Simulink来构建一个基于扩展卡尔曼滤波器(EKF)的定位系统
xiaoheshang_123
手把手教你学MATLAB专栏MATLAB开发项目实例1000例专栏matlabsimulink
目录一、准备工作二、步骤详解第一步:创建Simulink模型第二步:定义传感器模型第三步:设计扩展卡尔曼滤波器(EKF)第四步:实现EKF控制器第五步:整合控制系统第六步:设置参考轨迹或姿态第七步:运行仿真并分析结果注意事项结论基于多传感器融合的卡尔曼滤波定位系统仿真可以帮助我们理解如何利用不同类型的传感器数据来提高四翼无人机(Quadcopter)的位置和姿态估计精度。在这个教程中,我们将使用M
- 实时姿态估计:MediaPipe人体关键点检测实战教程
AIGC应用创新大全
ai
实时姿态估计:MediaPipe人体关键点检测实战教程关键词:实时姿态估计、MediaPipe、人体关键点检测、BlazePose、计算机视觉摘要:本文将带你从0到1掌握MediaPipe人体关键点检测技术。我们会用“给人体贴标记”的生活比喻解释核心概念,通过Python代码实战演示如何在5分钟内实现实时姿态估计,并结合健身动作分析、AR互动等真实场景,帮你理解这项技术的底层逻辑和应用价值。无论你
- 基于深度学习的IMU解算
SEU-WYL
深度学习dnn深度学习人工智能dnn
基于深度学习的惯性测量单元(IMU)解算是一种利用深度学习算法处理和分析IMU数据,以提升姿态估计、运动轨迹跟踪和定位精度的方法。IMU通常由加速度计、陀螺仪和磁力计组成,广泛应用于智能手机、无人机、机器人、虚拟现实(VR)和增强现实(AR)等领域。以下是关于这一领域的系统介绍:1.任务和目标IMU解算的主要任务是从IMU传感器数据中准确估计物体的姿态(姿态角、姿态矩阵或四元数)、速度和位置。具体
- 深入了解MediaPipe:谷歌开源的跨平台视觉AI框架
云探
手势识别人工智能python手势识别MediaPipe
在计算机视觉领域,实时性、跨平台支持与开发效率一直是开发者追求的目标。Google推出的开源框架MediaPipe正是为了解决这些问题而生。无论你是从事人脸识别、姿态估计还是手势识别,MediaPipe都能为你提供高效、实时的解决方案。本文将带你全面了解MediaPipe的功能、架构、应用场景及如何快速上手使用。一、什么是MediaPipe?MediaPipe是GoogleResearch推出的一
- 使用预训练PoseNet模型在安卓应用中进行人体关键点检测
t0_54program
大数据与人工智能android个人开发
在当今的计算机视觉领域,姿态估计是一项关键任务,它旨在检测物体的姿态,也就是物体的方向和位置。其实现原理是通过检测一系列关键点,借此了解物体的主要部分,并估计其当前的方向。基于这些关键点,我们能够以2D或3D形式构建物体的形状。在本篇教程中,我们将利用预训练的PoseNet模型,在安卓应用里检测人体的关键点。一、基础安卓项目为节省时间,我们以TensorFlowLitePoseNet安卓演示项目为
- Unity+MediaPipe虚拟试衣间技术实现全攻略
白木橙花
unity游戏引擎
引言:数字时尚革命的序章在元宇宙概念席卷全球的今天,虚拟试衣技术正成为连接物理世界与数字孪生的关键桥梁。本文将深入解析基于Unity引擎结合MediaPipe姿态估计框架的虚拟试衣系统实现,涵盖从环境搭建到完整AR试穿界面开发的全流程,最终实现支持实时人体追踪、多服装物理模拟及用户反馈的完整解决方案。一、技术选型与架构设计1.1技术栈组合逻辑Unity3D引擎:跨平台渲染核心,提供物理引擎(Phy
- [论文阅读]Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression
qian9905
姿态估计论文阅读论文阅读深度学习机器学习
该论文发表于CVPR2021Background背景该论文关注的是的是自底向上的关键点回归人体姿态估计,作者认为回归关键点坐标的特征必须集中注意到关键点周围的区域,才能够精确回归出关键点坐标。因此提出了一种名为解构式关键点回归(DEKR)的方法。这种直接回归坐标的方法超过了以前的关键点热度图检测并组合的方法,并且在COCO和CrowdPose两个数据集上达到了目前自底向上姿态检测的最好结果上图作者
- 基于OpenCV 的人体姿态估计
欣然~
3d
这是一个基于OpenCV的人体姿态估计系统,能够从摄像头视频流中实时检测人体关键点,并通过简化算法重建3D姿态,最后在3D空间中进行仿真展示。系统主要包含2D姿态检测、3D姿态重建和3D仿真三个核心模块。模块导入与环境准备python运行importcv2importnumpyasnpimportosimporttimeimportmatplotlib.pyplotaspltfrommpl_too
- nlf 2025 部署笔记
AI算法网奇
动捕人工智能
目录jit部署测试命令nlf-pipepinenlf-pipeline依赖项:stcnbuf人体分割,没有sam2好framepump库报错:分割算法:stcn.pth相机姿态估计:jit部署测试命令python-c"importtorch;importtorchvision;torch.jit.load('/shared_disk/models/others/nlf/models/nlf_l/n
- 建筑工地安全智能监测:基于多任务姿态估计与场景理解的联合优化方案
燃灯工作室
Ai深度学习pytorch零售神经网络
一、技术原理与数学模型1.1姿态估计基础模型采用OpenPose架构改进方案,定义人体关节点坐标预测公式:P=f(I;θ_p)=[(x_1,y_1,c_1),...,(x_n,y_n,c_n)]其中I为输入图像,θ_p为姿态估计网络参数,c_i为置信度评分1.2场景理解图卷积网络构建场景元素关系图G=(V,E),节点特征更新公式:h_v^{(l+1)}=σ(W^{(l)}h_v^{(l)}+∑_{
- 计算机视觉入门到精通:从理论到实战的全面指南
qsmyhsgcs
计算机视觉人工智能图像处理神经网络深度学习图像分割OpenCV
一、引言计算机视觉旨在让计算机能够“看”懂世界,通过对图像或视频数据的处理和分析,提取出有用的信息。随着深度学习技术的飞速发展,计算机视觉领域取得了突破性进展,许多曾经难以解决的问题如今都得到了有效解决。本文将围绕计算机视觉的核心内容,为读者提供一份全面的学习指南。二、计算机视觉基础概念1.计算机视觉的主要任务计算机视觉的主要任务包括图像分类、目标检测、图像分割、人脸识别、姿态估计和图像增强等。图
- YOLOv8-pose+streamlit 实现人体关键点检测/姿态估计系统
Jumbuck_10
深度学习项目YOLO深度学习关键点检测计算机视觉python健身姿态估计
人体关键点检测系统一、安装与配置1.1安装Streamlit1.2配置文件1.3运行Streamlit应用1.4找模板二、人体关键点检测算法2.1关键点序号2.2YOLOv8-pose图像推理三、将YOLOv8-pose算法内置到streamlit中3.1整体结构3.2常见问题-RGB通道颠倒-Numpy与OpenCV之间的转换四、效果展示五、源码一、安装与配置1.1安装Streamlit在命令行
- 基于Python和PyTorch的实现示例,结合YOLOv8进行人体检测、HRNet进行姿态估计,以及LSTM进行时间序列分析。
人工智能专属驿站
计算机视觉
视频输入:从摄像头或视频文件中读取视频流。人体检测与跟踪:使用目标检测模型(如YOLOv8、EfficientDet)检测视频帧中的人体。使用目标跟踪算法(如DeepSORT)跟踪人体,确保连续帧中的人体ID一致。姿态估计:使用姿态估计模型(如HRNet、OpenPose)提取人体的关键点(如头、肩、肘、膝、踝等)。关键点信息用于分析人体的姿态和运动。时间序列分析:使用时间序列模型(如LSTM、G
- ROS & ROS2 机器人深度相机激光雷达多传感器标定工具箱
强化学习与机器人控制仿真
机器人数码相机人工智能深度学习计算机视觉视觉检测自动驾驶
系列文章目录目录系列文章目录前言三、标定目标3.1使用自定义标定目标四、数据处理4.1相机数据中的标定目标检测4.2激光雷达数据中的标定目标检测输入过滤器:正常估算:区域增长:尺寸过滤器:RANSAC:4.3用于2D-3D姿态估计的透视点算法4.4用于3D-3D配准的GICP4.5误差计算和标定确定性估计五、工作区5.1机器人工作区5.1.1初始化新机器人工作区六、节点、可组合节点和小节点6.1节
- H36M-Toolbox 开源项目教程
章来锬
H36M-Toolbox开源项目教程H36M-Toolbox项目地址:https://gitcode.com/gh_mirrors/h3/H36M-Toolbox项目介绍H36M-Toolbox是一个用于处理和分析Human3.6M数据集的工具箱。Human3.6M是一个大规模的人体姿态估计数据集,包含超过300万张图像和详细的3D姿态标注。H36M-Toolbox提供了一系列工具和脚本,帮助研究
- 基于MediaPipe的智能俯卧撑计数与姿势矫正系统
机器懒得学习
python人工智能深度学习
在现代健身和体能训练中,俯卧撑是最基础也是最有效的自重训练动作之一。然而,许多人在进行俯卧撑训练时常常存在姿势不正确、计数不准确等问题。本文将介绍如何利用计算机视觉和姿态估计技术,开发一个智能的俯卧撑计数与姿势矫正系统。技术背景本系统主要基于以下核心技术:MediaPipePose解决方案:Google开发的实时姿态估计框架OpenCV:计算机视觉处理库NumPy:科学计算库,用于角度计算Pand
- Deepmotion技术浅析(四):人体姿态估计
爱研究的小牛
AIGC—虚拟现实AIGC—视频AIGC—游戏制作人工智能深度学习机器学习AIGC
人体姿态估计是DeepMotion动作捕捉和3D重建流程中的核心模块之一。该模块的主要任务是从输入的视频帧中检测并定位人体关键点(如关节、头部、手脚等)的位置。DeepMotion的人体姿态估计模块不仅支持2D关键点检测,还能够进行3D关键点估计,为后续的动作追踪、3D重建和动画生成提供基础数据。包括:1.2D关键点检测工作原理模型架构详解(OpenPose,HRNet)模型结构公式推导训练过程关
- 点云数据集汇总整理(持续更新......)
点云SLAM
点云数据处理技术点云数据集点云数据模型SLAM点云识别点云分割点云配准深度数据
点云数据集在计算机视觉和深度学习中用于各种任务,包括三维重建、物体识别、语义分割、姿态估计等。整理点云数据集时,可以根据应用场景和数据集的特性进行分类。以下是一些知名和常用的点云数据集的汇总:1.ModelNet系列ModelNet10/ModelNet40:描述:包含3DCAD模型的点云数据集,用于分类任务。ModelNet10包含10类物体,ModelNet40包含40类物体。应用:物体分类、
- 【每日论文】DINeMo: Learning Neural Mesh Models with no 3D Annotations
WHATEVER_LEO
每日论文3d人工智能计算机视觉神经网络深度学习自然语言处理
下载PDF或查看论文,请点击:LlamaFactory-huggingfacedailypaper-每日论文解读|LlamaFactory|LlamaFactory探索LlamaFactory,为你解读AI前沿技术文章,快速掌握最新技术动态https://www.llamafactory.cn/daily-paper/detail/?id=1793摘要层级3D/6D姿态估计是实现全面3D场景理解的
- 3d pose 指标和数据集
AI算法网奇
数据结构与算法3d
目录3D姿态估计、3维重建指标:数据集EHF数据集SMPL-X3D姿态估计、3维重建指标:MVE、PMVE和p-MPJPE都是用于评估3D姿态估计、三维重建等任务中预测结果与真实数据之间误差的指标。MVE(MeanVertexError):是指模型重建过程中每个顶点的预测位置与真实位置之间的平均误差。通常用于评估三维重建的精度。PMVE(Pre-matchedVertexError):这个指标是在
- YOLOv8目标检测算法详解
培根芝士
AIYOLO目标检测
YOLOv8是Ultralytics公司最新推出的Yolo系列目标检测算法,建立在Yolo系列历史版本的基础上,并引入了新的功能和改进点,以进一步提升性能和灵活性。它是实现目标检测、图像分割、姿态估计等任务的最佳选择之一。YOLOv8是一种基于深度学习的目标检测算法,其核心思想是将目标检测问题转化为一个回归问题,通过一次前向传播过程即可完成目标的位置和类别预测。它继承了YOLO系列算法的优点,如速
- Python 的 ultralytics 库详解
白.夜
人工智能
ultralytics是一个专注于计算机视觉任务的Python库,尤其以YOLO(YouOnlyLookOnce)系列模型为核心,提供了简单易用的接口,支持目标检测、实例分割、姿态估计等任务。本文将详细介绍ultralytics库的功能、安装方法、核心模块以及使用示例。1.ultralytics库简介ultralytics库由Ultralytics团队开发,旨在为YOLO系列模型提供高效、灵活且易
- TPAMI 2025 | Glissando-Net: 基于单视图的类别级姿态估计与3D重建
小白学视觉
论文解读IEEETPAMI3d深度学习论文解读顶刊论文IEEETPAMI
论文信息Glissando-Net:DeepSinglevIewCategoryLevelPoseeStimationANd3DReconstructionGlissando-Net:基于单视图的类别级姿态估计与3D重建作者:BoSun;HaoKang;LiGuan;HaoxiangLi;PhilipposMordohai;GangHua论文创新点联合估计3D形状和6D姿态:Glissando-N
- EDPose:探讨端到端的实时多人姿态估计
烧技湾
AI&ComputerVisionHPE人体姿态估计端到端检测
作者:曾爱玲(港中文博士,现已入职腾讯)单位:IDEA(深圳数字经济研究院)源码:github/ED-Pose该篇论文取得效果如下:这篇文章的优势在于:在复杂的多人场景下能够取得不错的性能提升,虽然在COCO等数据集上的提升不明显。这种端到端的方法,优势在于检测到人体是检测到关键点的一个保证。目录摘要一、介绍二、相关工作2.1.单阶段多人姿态估计2.2检测变压器:三、重新思考单阶段多人姿态估计3.
- 【计算机视觉】手势识别
油泼辣子多加
计算机视觉计算机视觉opencv人工智能
手势识别是计算机视觉领域中的重要方向,通过对摄像机采集的手部相关的图像序列进行分析处理,进而识别其中的手势,手势被识别后用户就可以通过手势来控制设备或者与设备交互。完整的手势识别一般有手的检测和姿态估计、手部跟踪和手势识别等。一、手掌检测importcv2importmediapipeasmp#初始化MediaPipe手部模型mp_hands=mp.solutions.handshands=mp_
- 【模块】Non-local Neural
dearr__
扒网络模块深度学习pytorchpython
论文《Non-localNeuralNetworks》作用非局部神经网络通过非局部操作捕获长距离依赖,这对于深度神经网络来说至关重要。这些操作允许模型在空间、时间或时空中的任何位置间直接计算相互作用,从而捕获长距离的交互和依赖关系。这种方法对于视频分类、对象检测/分割以及姿态估计等任务表现出了显著的改进。机制非局部操作通过在输入特征图的所有位置上计算响应的加权和来实现,其中权重由位置之间的关系(如
- YOLOv11快速上手:如何在本地使用TorchServe部署目标检测模型
SYC_MORE
YOLOv11系列教程:模型训练优化与部署全攻略TorchServeYOLOv11教程模型部署与推理TorchServe应用目标检测模型训练YOLO模型导出
引言YOLOv11是最新的目标检测模型,以其高效和准确著称,广泛应用于图像分割、姿态估计等任务。本文将详细介绍如何使用YOLOv11训练你的第一个目标检测模型,并通过TorchServe在本地进行部署,实现模型的快速推理。环境准备在开始之前,确保你的开发环境满足以下要求:Python版本:3.8或以上PyTorch:1.9或以上CUDA:如果使用GPU,加速训练和推理TorchServe:用于模型
- 在瑞芯微RK3588平台上使用RKNN部署YOLOv8Pose模型的C++实战指南
机 _ 长
YOLO系列模型有效涨点改进深度学习落地实战YOLOc++开发语言
在人工智能和计算机视觉领域,人体姿态估计是一项极具挑战性的任务,它对于理解人类行为、增强人机交互等方面具有重要意义。YOLOv8Pose作为YOLO系列中的新成员,以其高效和准确性在人体姿态估计任务中脱颖而出。本文将详细介绍如何在瑞芯微RK3588平台上,使用RKNN(RockchipNeuralNetworkToolkit)框架部署YOLOv8Pose模型,并进行C++代码的编译和运行。注本文全
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出