深度学习之基于CNN实现汉字版手写数字识别(Chinese-Mnist)

Mnist数据集是深度学习入门的数据集,昨天发现了Chinese-Mnist数据集,与Mnist数据集类似,只不过是汉字数字,例如‘一’、‘二’、‘三’等,本次实验利用自己搭建的CNN网络实现Chinese版的手写数字识别。

1.导入库

import tensorflow as tf
import matplotlib.pyplot as plt
import os,PIL,pathlib
import numpy as np
import pandas as pd
import warnings
from tensorflow import keras

warnings.filterwarnings("ignore")#忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

2.数据加载

原数据中包括15000张图片,如下所示:
深度学习之基于CNN实现汉字版手写数字识别(Chinese-Mnist)_第1张图片
原数据并没有将各类数据分开,而是给出了一个csv文件:
深度学习之基于CNN实现汉字版手写数字识别(Chinese-Mnist)_第2张图片
在进行训练之前将图片分类,首先对数据的标签进行切片

train = pd.read_csv("E:/tmp/.keras/datasets/chinese_mnist/chinese_mnist.csv")
#训练数据的标签
train_image_label = [i for i in train["character"]]
#将标签切片
train_label_ds = tf.data.Dataset.from_tensor_slices(train_image_label)

统计每张图片的具体路径:

#训练数据的具体路径
img_dir = "E:/tmp/.keras/datasets/chinese_mnist/data/data/input"
train_image_paths = []
for row in train.itertuples():
    suite_id = row[1]
    sample_id = row[2]
    code = row[3]
    train_image_paths.append(img_dir+"_"+str(suite_id)+"_"+str(sample_id)+"_"+str(code)+".jpg")
#对图片路径进行切片
train_path_ds = tf.data.Dataset.from_tensor_slices(train_image_paths)

train_image_paths结果如下:

E:/tmp/.keras/datasets/chinese_mnist/data/data/input_1_1_10.jpg

读取图片并进行预处理,然后切片

#图片预处理
def preprocess_image(image):
    image = tf.image.decode_jpeg(image,channels = 3)
    image = tf.image.resize(image,[height,width])
    return image / 255.0
def load_and_preprocess_image(path):
    image = tf.io.read_file(path)
    return preprocess_image(image)
#根据路径读取图片并进行预处理
train_image_ds = train_path_ds.map(load_and_preprocess_image,num_parallel_calls=tf.data.experimental.AUTOTUNE)

将train_image_ds与train_label_ds组合在一起

image_label_ds = tf.data.Dataset.zip((train_image_ds,train_label_ds))

显示图片:

for i in range(20):
    plt.subplot(4, 5, i + 1)
    num +=1
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)

    # 显示图片
    images = plt.imread(train_image_paths[i])
    plt.imshow(images)
    # 显示标签
    plt.xlabel(train_image_label[i])

plt.show()

在并未对数据进行shuffle之前,如下所示:
深度学习之基于CNN实现汉字版手写数字识别(Chinese-Mnist)_第3张图片
原数据中一共15000张图片,分为15类,每类1000张,并按照顺序排列,因此需要对数据进行打乱。

image_label_ds = image_label_ds.shuffle(15000)

按照8:2的比例划分训练集与测试集

train_ds = image_label_ds.take(12000).shuffle(2000)
test_ds = image_label_ds.skip(12000).shuffle(3000)

超参数的设置

height = 64
width = 64
batch_size = 128
epochs = 50

对训练集与测试集进行batch_size 划分

train_ds = train_ds.batch(batch_size)#设置batch_size
train_ds = train_ds.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
test_ds = test_ds.batch(batch_size)
test_ds = test_ds.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)

再次检查图片,看看是否被打乱顺序:

plt.figure(figsize=(8, 8))

for images, labels in train_ds.take(1):
    # print(images.shape)
    for i in range(12):
        ax = plt.subplot(4, 3, i + 1)
        plt.imshow(images[i])
        plt.title(labels[i].numpy())  # 使用.numpy()将张量转换为 NumPy 数组

        plt.axis("off")
    break
plt.show()

深度学习之基于CNN实现汉字版手写数字识别(Chinese-Mnist)_第4张图片
顺序已被打乱,初始目标完成。

3.网络搭建&&编译

model = tf.keras.Sequential([
    tf.keras.layers.Conv2D(filters=32,kernel_size=(3,3),padding="same",activation="relu",input_shape=[64, 64, 3]),
    tf.keras.layers.MaxPooling2D((2,2)),
    tf.keras.layers.Conv2D(filters=64,kernel_size=(3,3),padding="same",activation="relu"),
    tf.keras.layers.MaxPooling2D((2,2)),
    tf.keras.layers.Conv2D(filters=64,kernel_size=(3,3),padding="same",activation="relu"),
    tf.keras.layers.MaxPooling2D((2,2)),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(64, activation="relu"),
    tf.keras.layers.Dense(15, activation="softmax")
])

model.compile(optimizer="adam",
                loss='sparse_categorical_crossentropy',
                metrics=['accuracy'])
model.summary()
history = model.fit(
    train_ds,
    validation_data=test_ds,
    epochs = epochs
)

经过50次epochs,训练结果如下:
深度学习之基于CNN实现汉字版手写数字识别(Chinese-Mnist)_第5张图片
准确率达到了100%

4.混淆矩阵的绘制

模型加载:

model = tf.keras.models.load_model("E:/Users/yqx/PycharmProjects/chinese_mnist/model.h5")

标签列表如下所示:

all_label_names = ['零','一','二','三','四','五','六','七','八','九','十','百','千','万','亿']

绘制混淆矩阵

from sklearn.metrics import confusion_matrix
import seaborn as sns
import pandas as pd
    # 绘制混淆矩阵
all_label_names = ['零','一','二','三','四','五','六','七','八','九','十','百','千','万','亿']
def plot_cm(labels, pre):
    conf_numpy = confusion_matrix(labels, pre)  # 根据实际值和预测值绘制混淆矩阵
    conf_df = pd.DataFrame(conf_numpy, index=all_label_names,
                               columns=all_label_names)  # 将data和all_label_names制成DataFrame
    plt.figure(figsize=(8, 7))

    sns.heatmap(conf_df, annot=True, fmt="d", cmap="BuPu")  # 将data绘制为混淆矩阵
    plt.title('混淆矩阵', fontsize=15)
    plt.ylabel('真实值', fontsize=14)
    plt.xlabel('预测值', fontsize=14)
    plt.show()

model = tf.keras.models.load_model("E:/Users/yqx/PycharmProjects/chinese_mnist/model.h5")

test_pre = []
test_label = []
for images, labels in test_ds:
    for image, label in zip(images, labels):
        img_array = tf.expand_dims(image, 0)  # 增加一个维度
        pre = model.predict(img_array)  # 预测结果
        test_pre.append(all_label_names[np.argmax(pre)])  # 将预测结果传入列表
        test_label.append(all_label_names[label.numpy()])  # 将真实结果传入列表
plot_cm(test_label, test_pre)  # 绘制混淆矩阵#

深度学习之基于CNN实现汉字版手写数字识别(Chinese-Mnist)_第6张图片
总结:本次实验最复杂的就是标签处理那一块,只有处理好这一步骤,才能正确的将图片和标签划分到一起。实验数据只有15000张,而Mnist数据集有70000张,虽然本次的模型准确率达到了100%,但是仍有可能在别的图片预测错误。

努力加油a啊

你可能感兴趣的:(机器学习,cnn,深度学习,tensorflow,Chinese-Mnist)