# coding=gbk
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import numpy as np
#结果图编码从0开始,编号依次加一对应蛋白的编号,其中50为m7
file_name = pd.read_excel('lactose-lactuse.xlsx',engine='openpyxl')
data = file_name.pivot("lactose","lactulose","lactulose-lactose")
#sns.clustermap(file_name, xticklabels=True,fmt='d', cmap='RdYlBu',standard_scale=1)
#sns.clustermap(file_name, xticklabels=True, yticklabels=True, fmt='d', cmap='RdYlBu',standard_scale=1)
#plt.savefig('lac-hot.svg')
#plt.show()
file_name = pd.read_excel('score1000.xlsx',engine='openpyxl')
data = file_name.pivot("total_score","interface_delta_B")
#plt.yticks(np.arange(1,1200,1))
sns.clustermap(file_name, xticklabels=True, yticklabels='auto',fmt='d', cmap='RdYlBu',standard_scale=1)
#plt.savefig('lac-hot.svg')
plt.show()