基于特征融合与注意力机制的药物互作模型:MDF-SA-DDI

论文题目:MDF-SA-DDI: predicting drug–drug interaction events based on multi-source drug fusion, multi-source feature fusion and ransformer self-attention mechanism

论文来源: Briefings in Bioinformatics,00(00), 2021,1–13

网址:https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bbab421/6406700?redirectedFrom=fulltext

代码: GitHub - ShenggengLin/MDF-SA-DDI

主要内容:使用多源药物融合,多源特征融合和Transformer进行药物互作预测

  • 四个网络+多头自注意力机制
    • 孪生网络
    • 卷积神经网络
    • 两个自动编码器

药物互作相关

  • 为什么要进行药物互作的研究
    • 大多数人类疾病病理复杂,对单一的药物都有抗药性。使用联合药物治疗可以有效提高药效,降低耐药性。
    • 但是,不同的药物之间可能会发生相互作用(drug–drug interaction, DDI),可能会导致不良事件。
    • 而每两种药都进行试验验证过于昂贵,因而使用计算机进行模拟的研究显得比较重要了。
  • 主流方法:(1)基于机器学习的方法;(2)基于深度学习的方法;(3)基于矩阵分解的方法;(4)基于网络扩散的方法;(5)基于集成学习的方法;(6)基于文献或文本挖掘的方法。
  • 以往方法的问题
    1. 大多基于深度学习技术,将两个药物向量连接在一起预测DDI事件,而没有尝试其他方法来融合药物对的信息
    2. 大多数方法在预测已知药物之间未观察到的相互作用方面表现良好,很难预测新药之间未被观察到的相互作用

提出方法:MDF-SA-DDI

  • 具体内容
    1. 孪生网络(Siamese Network,SN),将两种药物的特征输入其中,得到的两个向量作为药物对的新特征。需要注意的是,这两个向量表示的是每个药物各自的特征
    2. 卷积神经网络(CN),将两个药物特征拼接,然后将其进行卷积,得到药物对的潜在特征
    3. 自动编码器(AE1),将两个特征向量拼接起来,然后通过自动编码器得到特征
    4. 自动编码器(AE2),将两个特征向量按照元素相加,然后通过自动编码器得到特征
    • 自注意力层:将上述四个向量,过一个多头自注意力模块进行特征融合
    • 全连接:将上述得到的特征过一个全连接层,得到最后的药物互作事件
    • 基于特征融合与注意力机制的药物互作模型:MDF-SA-DDI_第1张图片

  • 由于数据集特征过多,直接使用容易得到维数灾难,基于类似药物可能与相同的药物相互作用的假设,文章直接使用了Jaccard近似

实验及结果

  • 三种实验,相应任务中的新药表示在训练集中缺失,但在测试集中存在
    1. 预测已知药物之间未观察到的相互作用事件(任务1)
    2. 预测已知药物与新药之间的相互作用事件(任务2)
    3. 预测新药之间的相互作用事件(任务3)

基于特征融合与注意力机制的药物互作模型:MDF-SA-DDI_第2张图片

基于特征融合与注意力机制的药物互作模型:MDF-SA-DDI_第3张图片

基于特征融合与注意力机制的药物互作模型:MDF-SA-DDI_第4张图片

基于特征融合与注意力机制的药物互作模型:MDF-SA-DDI_第5张图片

基于特征融合与注意力机制的药物互作模型:MDF-SA-DDI_第6张图片

你可能感兴趣的:(阅读笔记,深度学习,机器学习,人工智能)