- PyTorch 深度学习博客
Zoro|
PyTorchDeepLearning人工智能
PyTorch深度学习博客欢迎来到我的PyTorch深度学习博客!在这里,我将分享使用PyTorch学习和实践深度学习项目的点滴经验。本博客适用于初学者和有一定基础的开发者,旨在帮助大家快速搭建环境、掌握核心概念,并通过实例了解实际应用。环境配置为了确保项目的稳定性和兼容性,我选择了Python3.9环境,并在conda创建的虚拟环境中运行最新且稳定的PyTorch版本2.6.0。1.创建Pyth
- Pytorch学习之路(3)
AAAx1anyu
Pytorch学习之旅学习人工智能pytorch深度学习笔记
一.机器学习任务的整体流程1.数据预处理:数据格式统一、异常数据消除、必要数据转换,划分训练集、验证集、测试集2.选择模型3.设定损失函数、优化方法、对应的超参数4.用模型拟合训练集数据,在验证集/测试集上计算模型表现二.数据读入pytorch数据读入通过Dataset+DataLoader的方式完成,Dataset定义好数据的格式和数据变换形式,DataLoader用iterative的方式不断
- Pytorch学习之路(2)
AAAx1anyu
Pytorch学习之旅pytorch学习人工智能
(PS:请先阅读Pytorch学习之路(1)开篇注释)【因为我也是小菜鸟】Pytorch基础知识1.张量(1)简介0维张量——标量(数字)1维张量——向量2维张量——矩阵3维张量——时间序列数据股价文本数据单张彩色图片(RGB)4维张量——图像5维张量——视频张量的核心是一个数据容器(2)创建tensor1).随机初始化矩阵[torch.rand()]importtorchx=torch.rand
- Pytorch学习笔记(二)
不牌不改
【Pytorch学习】pytorch深度学习python
后续遇到一些函数等知识,还会进行及时的补充。tensor的创建使用pytorch中的列表创建tensortensor=torch.Tensor([[-1,1],[0,2<
- PyTorch学习(13):PyTorch的张量相乘(torch.matmul)
赛先生.AI
PyTorchpytorch
PyTorch学习(1):torch.meshgrid的使用-CSDN博客PyTorch学习(2):torch.device-CSDN博客PyTorch学习(9):torch.topk-CSDN博客PyTorch学习(10):torch.where-CSDN博客PyTorch学习(11):PyTorch的形状变换(view,reshape)与维度变换(transpose,permute)-CSDN
- PyTorch实现CIFAR-10分类代码
曹勖之
PyTorch学习之路深度学习pytorch
这篇是PyTorch学习之路第七篇,用于记录PyTorch实现CIFAR-10分类代码(书上的代码有好多冗余)目录完整代码(还未训练)完整代码(已训练,直接载入模型)下面实例数据集位于:C:\Users\22130\Learning_Pytorch\dataset完整代码(还未训练)importtorchimporttorchvisionimporttorchvision.transformsas
- PyTorch学习笔记之基础函数篇(四)
熊猫Devin
深度学习之PyTorchpytorch学习笔记
文章目录2.8torch.logspace函数讲解2.9torch.ones函数2.10torch.rand函数2.11torch.randn函数2.12torch.zeros函数2.8torch.logspace函数讲解torch.logspace函数在PyTorch中用于生成一个在对数尺度上均匀分布的张量(tensor)。这意味着张量中的元素是按照对数间隔排列的,而不是线性间隔。这对于创建在数
- 深入浅出PyTorch学习网址
今天是学习的一天
人工智能
https://datawhalechina.github.io/thorough-pytorch/
- Pytorch学习记录-接近人类水平的GEC(使用混合机器翻译模型)
我的昵称违规了
五月第二周要结束了,接下来的三个月主要是文献阅读,准备8、9月的开题报告,技术类的文献集中在GEC和Textmaching的应用方面,读完之后找demo复现,然后应用。理论方面的论文也都是英文的8.NearHuman-LevelPerformanceinGrammaticalErrorCorrectionwithHybridMachineTranslation昨天一天没看论文,发现我文献阅读速度太
- Pytorch学习准备_Pycharm及Jupyter使用
写点什么呢
学习记录pytorch学习人工智能pythonpycharm
已经创建环境pytorch01,可参考http://t.csdnimg.cn/KwJvh一.pytorch环境查看打开AnacondaPrompt进入pytorch01环境condaactivatepytorch01列出这个环境下的工具包piplist二.Pycharm打开,创建新项目2.1选择“现有指示器"(笔者使用此法未成功,使用的是2.2)找到你自己的pytorch位置笔者如图可以看到解释器
- Pytorch学习01_加载数据初认识
写点什么呢
pytorch学习人工智能pythonpycharmpipipython
一.Dataset新建py文件fromtorch.utils.dataimportDataset可以按住”Ctrl“,鼠标左键点击Dataset,可以打开Dataset的定义及其内部函数二.编写引用cv2模块终端运行pipinstallopencv-python然后就可以引用cv2模块importcv2引用ImagefromPILimportImage数据集链接https://pan.baidu.
- Pytorch学习02_TensorBoard使用01
写点什么呢
学习记录pytorch学习人工智能pythonpycharm
更换编辑器找到自己的Anaconda安装路径下envs\pytorch01中的oython.exe,pytorch01是笔者自己创建的pytorch环境名选择好后,点击确定点击“应用”,再点击“确定”在pytorch环境下安装tensorboardpipinstallpytorch安装结束writer.add_scalar("y=x",i,i)运行如下内容fromtorch.utils.tenso
- Pytorch学习03_TensorBoard使用02
写点什么呢
学习记录pytorch学习人工智能pycharmpython
Opencv读取图片,获得numpy型数据类型复制图片的相对路径目前这种type不适用,考虑用numpy类型安装opencv,在pytorch环境下pipinstallopencv-python导入numpyimportnumpyasnp将PIL类型的img转换为NumPy数组img_array=np.array(img)HWC三通道H:高度W:宽度C:通道fromtorch.utils.tens
- 【pytorch学习】关于torch.nn.MaxPool2d和torch.nn.functional.max_pool2d
你好,我老婆不吃香菜
pytorch深度学习
两者之间的区别与联系首先给出结论,torch.nn.MaxPool2d和torch.nn.functional.max_pool2d两者本质上是一样的。具体可以参考torch.nn.MaxPool2d的源代码,核心源代码如下所示:from..importfunctionalasFclassMaxPool2d(_MaxPoolNd):kernel_size:_size_2_tstride:_size
- Pytorch学习记录-GEC语法纠错
我的昵称违规了
Pytorch学习记录-GEC语法纠错01五月第一周要结束了,接下来的三个月主要是文献阅读,准备8、9月的开题报告,技术类的文献集中在GEC和Textmaching的应用方面,读完之后找demo复现,然后应用。理论方面的论文也都是英文的,国内这块做的真的不行啊……学习计划GEC概念AlibabaatIJCNLP-2017Task1:EmbeddingGrammaticalFeaturesintoL
- PyTorch(超详细)部署与激活 举起Python火炬,点亮智慧人生【Windows版】
心安成长
PyTorchpythonpytorchwindows
AI时代,我们不仅要学习Python,同时机器学习,深度学习利器也要逐步掌握,再次开始Pytorch学习教程记录。PyTorch是一个流行的开源深度学习框架,它可以用于构建、训练和部署各种机器学习和深度学习模型。PyTorch可以用于以下领域:计算机视觉:图像分类、目标检测、图像分割、人脸识别等。自然语言处理:机器翻译、文本分类、情感分析、问答系统等。语音处理:语音识别、语音合成、说话人识别等。生
- Pytorch学习记录-卷积Seq2Seq(模型训练)
我的昵称违规了
Pytorch学习记录-torchtext和Pytorch的实例50.PyTorchSeq2Seq项目介绍在完成基本的torchtext之后,找到了这个教程,《基于Pytorch和torchtext来理解和实现seq2seq模型》。这个项目主要包括了6个子项目使用神经网络训练Seq2Seq使用RNNencoder-decoder训练短语表示用于统计机器翻译使用共同学习完成NMT的堆砌和翻译打包填充
- Python-Pytorch学习记录
yt_0618
学习
目录1.python-pycharm下载安装2.VSCode下载安装3.MATLAB下载安装4.pytorch一条龙下载安装环境配置1.python-pycharm下载安装pycharm从安装到全副武装,学起来才嗖嗖的快,图片超多,因为过度详细!_pycharm下载和环境配置-CSDN博客https://chuanchuan.blog.csdn.net/article/details/119934
- pytorch学习笔记(2)--Tensor
ToToBe
pytorch笔记1024程序员节
系列文章pytorch学习笔记(1)–QUICKSTARTpytorch学习笔记(2)–Tensorpytorch学习笔记(3)–数据集与数据导入pytorch学习笔记(4)–创建模型(BuildModel)pytorch学习笔记(5)–Autograd文章目录系列文章Tensor(张量)1.初始化张量2.张量的属性3.张量的操作1.类似numpy的索引和切片2.拼接3.算数操作4.单元素张量5.
- PyTorch学习笔记(三):softmax回归
FriendshipT
PyTorch学习笔记pytorch回归深度学习softmax
PyTorch学习笔记(三):softmax回归softmax回归分类问题softmax回归模型单样本分类的矢量计算表达式小批量样本分类的矢量计算表达式交叉熵损失函数模型预测及评价小结Torchvision获取数据集读取小批量PyTorch从零开始实现softmax获取和读取数据初始化模型参数实现softmax运算定义模型定义损失函数定义优化算法计算分类准确率训练模型预测小结PyTorch模块实现
- PyTorch学习:加载模型和参数
TravelingLight77
DLPytorchpytorch深度学习神经网络
1.直接加载模型和参数加载别人训练好的模型:#保存和加载整个模型torch.save(model_object,'resnet.pth')model=torch.load('resnet.pth')2.分别加载网络的结构和参数#将my_resnet模型储存为my_resnet.pthtorch.save(my_resnet.state_dict(),"my_resnet.pth")#加载resne
- PyTorch学习笔记1
zt_d918
训练过程importtorch#batch_size,input_dimension,hidden_dimension,output_dimensionN,D_in,H,D_out=64,1000,100,10#模拟一个训练集x=torch.randn(N,D_in)y=torch.randn(N,D_out)#模型定义有多种方式,这里不提model#loss函数定义loss_fn=torch.n
- 第二十九周:文献阅读笔记(ResMLP)+ pytorch学习(Resnet代码实现)
@默然
笔记pytorch学习人工智能python深度学习机器学习
第二十九周:文献阅读笔记(ResMLP)摘要Abstract1.ResMLP1.1文献摘要1.2文献引言1.3ResMLP方法1.3.1整体流程1.3.2残差多感知机层1.4实验1.4.1数据集1.4.2超参数设置1.4.3主要结果1.4.4监督设置1.4.5自监督设置1.4.5知识蒸馏设置1.5ResMLP的创新点2.pytorch学习(ResNet代码实现)2.1数据集2.2文件结构2.3下载
- 第二十八周:文献阅读笔记(弱监督学习)+ pytorch学习
@默然
笔记学习pytorch深度学习人工智能python
第二十八周:文献阅读笔记(弱监督学习)摘要Abstract1.弱监督学习1.1.文献摘要1.2.引言1.3.不完全监督1.3.1.主动学习与半监督学习1.3.2.通过人工干预1.3.3.无需人工干预1.4.不确切的监督1.5.不准确的监督1.6.弱监督学习的创新点2.pytorch学习2.1.对现有模型进行修改2.2.优化器的使用2.3.完整的模型训练套路总结摘要弱监督学习是一种机器学习方法,其训
- 第二十九周:文献阅读笔记(DenseNet)+ pytorch学习
@默然
笔记pytorch学习
第二十九周:文献阅读笔记(DenseNet)+pytorch学习摘要Abstract1、DenseNet文献阅读1.1文献摘要1.2文献引言1.3DenseNets网络1.3.1残差网络1.3.2密集连接1.3.3实施细节1.4实验1.4.1数据集1.4.1.1CIFAR1.4.1.2SVHN1.4.2模型训练1.4.3CIFAR和SVHN的分类结果1.4.4ImageNet上的分类结果1.5总结
- Pytorch学习记录-Pytorch可视化使用tensorboardX
我的昵称违规了
Pytorch学习记录-Pytorch可视化使用tensorboardX在很早很早以前(至少一个半月),我做过几节关于tensorboard的学习记录。https://www.jianshu.com/p/23205a7921cdhttps://www.jianshu.com/p/6235c1ecde67https://www.jianshu.com/p/2b24454b0629https://ww
- PyTorch学习---2.自动求梯度
与世无争小菜鸡
自动求梯度首先给大家介绍几个基本概念:方向导数:是一个数;反映的是f(x,y)在P0点沿方向v的变化率。偏导数:是多个数(每元有一个);是指多元函数沿坐标轴方向的方向导数,因此二元函数就有两个偏导数。偏导函数:是一个函数;是一个关于点的偏导数的函数。梯度:是一个向量;每个元素为函数对一元变量的偏导数;它既有大小(其大小为最大方向导数),也有方向。摘自《方向导数与梯度》梯度从本质上来说也是导数的一种
- pytorch学习路径
诗人藏夜里
微信公众号:诗人藏夜里参考了黄海广老师的[pytorch快速入门资料](https://zhuanlan.zhihu.com/p/87263048),并结合自身从0到1的学习经历,写下此pytorch入门路径本路径适合人群:深度学习初学者,深度学习框架初学者**欢迎拥抱最美DL框架**#1.[莫烦pytorch系列教程](https://morvanzhou.github.io/tutorials
- 小土堆pytorch学习笔记004
柠檬不萌只是酸i
深度学习pytorch学习笔记机器学习深度学习
目录1、神经网络的基本骨架-nn.Module的使用2、卷积操作实例3、神经网络-卷积层4、神经网络-最大池化的使用(1)最大池化画图理解:(2)代码实现:5、神经网络-非线性激活(1)代码实现(调用sigmoid函数)6、神经网络-线性层(1)代码7、网络搭建-小实战(1)完整代码1、神经网络的基本骨架-nn.Module的使用官网地址:pytorch里的nnimporttorchfromtor
- 小土堆pytorch学习笔记003 | 下载数据集dataset 及报错处理
柠檬不萌只是酸i
深度学习人工智能深度学习机器学习pytorchpython
目录1、下载数据集2、展示数据集里面的内容3、DataLoader的使用例子:结果展示:1、下载数据集#数据集importtorchvisiontrain_set=torchvision.datasets.CIFAR10(root="./test10_dataset",train=True,download=True)test_set=torchvision.datasets.CIFAR10(ro
- scala的option和some
矮蛋蛋
编程scala
原文地址:
http://blog.sina.com.cn/s/blog_68af3f090100qkt8.html
对于学习 Scala 的 Java™ 开发人员来说,对象是一个比较自然、简单的入口点。在 本系列 前几期文章中,我介绍了 Scala 中一些面向对象的编程方法,这些方法实际上与 Java 编程的区别不是很大。我还向您展示了 Scala 如何重新应用传统的面向对象概念,找到其缺点
- NullPointerException
Cb123456
androidBaseAdapter
java.lang.NullPointerException: Attempt to invoke virtual method 'int android.view.View.getImportantForAccessibility()' on a null object reference
出现以上异常.然后就在baidu上
- PHP使用文件和目录
天子之骄
php文件和目录读取和写入php验证文件php锁定文件
PHP使用文件和目录
1.使用include()包含文件
(1):使用include()从一个被包含文档返回一个值
(2):在控制结构中使用include()
include_once()函数需要一个包含文件的路径,此外,第一次调用它的情况和include()一样,如果在脚本执行中再次对同一个文件调用,那么这个文件不会再次包含。
在php.ini文件中设置
- SQL SELECT DISTINCT 语句
何必如此
sql
SELECT DISTINCT 语句用于返回唯一不同的值。
SQL SELECT DISTINCT 语句
在表中,一个列可能会包含多个重复值,有时您也许希望仅仅列出不同(distinct)的值。
DISTINCT 关键词用于返回唯一不同的值。
SQL SELECT DISTINCT 语法
SELECT DISTINCT column_name,column_name
F
- java冒泡排序
3213213333332132
java冒泡排序
package com.algorithm;
/**
* @Description 冒泡
* @author FuJianyong
* 2015-1-22上午09:58:39
*/
public class MaoPao {
public static void main(String[] args) {
int[] mao = {17,50,26,18,9,10
- struts2.18 +json,struts2-json-plugin-2.1.8.1.jar配置及问题!
7454103
DAOspringAjaxjsonqq
struts2.18 出来有段时间了! (貌似是 稳定版)
闲时研究下下! 貌似 sruts2 搭配 json 做 ajax 很吃香!
实践了下下! 不当之处请绕过! 呵呵
网上一大堆 struts2+json 不过大多的json 插件 都是 jsonplugin.34.jar
strut
- struts2 数据标签说明
darkranger
jspbeanstrutsservletScheme
数据标签主要用于提供各种数据访问相关的功能,包括显示一个Action里的属性,以及生成国际化输出等功能
数据标签主要包括:
action :该标签用于在JSP页面中直接调用一个Action,通过指定executeResult参数,还可将该Action的处理结果包含到本页面来。
bean :该标签用于创建一个javabean实例。如果指定了id属性,则可以将创建的javabean实例放入Sta
- 链表.简单的链表节点构建
aijuans
编程技巧
/*编程环境WIN-TC*/ #include "stdio.h" #include "conio.h"
#define NODE(name, key_word, help) \ Node name[1]={{NULL, NULL, NULL, key_word, help}}
typedef struct node { &nbs
- tomcat下jndi的三种配置方式
avords
tomcat
jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。命名服务将名称和对象联系起来,使得我们可以用名称
访问对象。目录服务是一种命名服务,在这种服务里,对象不但有名称,还有属性。
tomcat配置
- 关于敏捷的一些想法
houxinyou
敏捷
从网上看到这样一句话:“敏捷开发的最重要目标就是:满足用户多变的需求,说白了就是最大程度的让客户满意。”
感觉表达的不太清楚。
感觉容易被人误解的地方主要在“用户多变的需求”上。
第一种多变,实际上就是没有从根本上了解了用户的需求。用户的需求实际是稳定的,只是比较多,也比较混乱,用户一般只能了解自己的那一小部分,所以没有用户能清楚的表达出整体需求。而由于各种条件的,用户表达自己那一部分时也有
- 富养还是穷养,决定孩子的一生
bijian1013
教育人生
是什么决定孩子未来物质能否丰盛?为什么说寒门很难出贵子,三代才能出贵族?真的是父母必须有钱,才能大概率保证孩子未来富有吗?-----作者:@李雪爱与自由
事实并非由物质决定,而是由心灵决定。一朋友富有而且修养气质很好,兄弟姐妹也都如此。她的童年时代,物质上大家都很贫乏,但妈妈总是保持生活中的美感,时不时给孩子们带回一些美好小玩意,从来不对孩子传递生活艰辛、金钱来之不易、要懂得珍惜
- oracle 日期时间格式转化
征客丶
oracle
oracle 系统时间有 SYSDATE 与 SYSTIMESTAMP;
SYSDATE:不支持毫秒,取的是系统时间;
SYSTIMESTAMP:支持毫秒,日期,时间是给时区转换的,秒和毫秒是取的系统的。
日期转字符窜:
一、不取毫秒:
TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
简要说明,
YYYY 年
MM 月
- 【Scala六】分析Spark源代码总结的Scala语法四
bit1129
scala
1. apply语法
FileShuffleBlockManager中定义的类ShuffleFileGroup,定义:
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
...
def apply(bucketId
- Erlang中有意思的bug
bookjovi
erlang
代码中常有一些很搞笑的bug,如下面的一行代码被调用两次(Erlang beam)
commit f667e4a47b07b07ed035073b94d699ff5fe0ba9b
Author: Jovi Zhang <
[email protected]>
Date: Fri Dec 2 16:19:22 2011 +0100
erts:
- 移位打印10进制数转16进制-2008-08-18
ljy325
java基础
/**
* Description 移位打印10进制的16进制形式
* Creation Date 15-08-2008 9:00
* @author 卢俊宇
* @version 1.0
*
*/
public class PrintHex {
// 备选字符
static final char di
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 利用cmd命令将.class文件打包成jar
chenyu19891124
cmdjar
cmd命令打jar是如下实现:
在运行里输入cmd,利用cmd命令进入到本地的工作盘符。(如我的是D盘下的文件有此路径 D:\workspace\prpall\WEB-INF\classes)
现在是想把D:\workspace\prpall\WEB-INF\classes路径下所有的文件打包成prpall.jar。然后继续如下操作:
cd D: 回车
cd workspace/prpal
- [原创]JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
comsci
eclipse设计模式算法工作swing
JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
&nb
- SecureCRT右键粘贴的设置
daizj
secureCRT右键粘贴
一般都习惯鼠标右键自动粘贴的功能,对于SecureCRT6.7.5 ,这个功能也已经是默认配置了。
老版本的SecureCRT其实也有这个功能,只是不是默认设置,很多人不知道罢了。
菜单:
Options->Global Options ...->Terminal
右边有个Mouse的选项块。
Copy on Select
Paste on Right/Middle
- Linux 软链接和硬链接
dongwei_6688
linux
1.Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。
【硬连接】硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连
- DIV底部自适应
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- Centos6.5使用yum安装mysql——快速上手必备
dcj3sjt126com
mysql
第1步、yum安装mysql
[root@stonex ~]# yum -y install mysql-server
安装结果:
Installed:
mysql-server.x86_64 0:5.1.73-3.el6_5 &nb
- 如何调试JDK源码
frank1234
jdk
相信各位小伙伴们跟我一样,想通过JDK源码来学习Java,比如collections包,java.util.concurrent包。
可惜的是sun提供的jdk并不能查看运行中的局部变量,需要重新编译一下rt.jar。
下面是编译jdk的具体步骤:
1.把C:\java\jdk1.6.0_26\sr
- Maximal Rectangle
hcx2013
max
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
public class Solution {
public int maximalRectangle(char[][] matrix)
- Spring MVC测试框架详解——服务端测试
jinnianshilongnian
spring mvc test
随着RESTful Web Service的流行,测试对外的Service是否满足期望也变的必要的。从Spring 3.2开始Spring了Spring Web测试框架,如果版本低于3.2,请使用spring-test-mvc项目(合并到spring3.2中了)。
Spring MVC测试框架提供了对服务器端和客户端(基于RestTemplate的客户端)提供了支持。
&nbs
- Linux64位操作系统(CentOS6.6)上如何编译hadoop2.4.0
liyong0802
hadoop
一、准备编译软件
1.在官网下载jdk1.7、maven3.2.1、ant1.9.4,解压设置好环境变量就可以用。
环境变量设置如下:
(1)执行vim /etc/profile
(2)在文件尾部加入:
export JAVA_HOME=/home/spark/jdk1.7
export MAVEN_HOME=/ho
- StatusBar 字体白色
pangyulei
status
[[UIApplication sharedApplication] setStatusBarStyle:UIStatusBarStyleLightContent];
/*you'll also need to set UIViewControllerBasedStatusBarAppearance to NO in the plist file if you use this method
- 如何分析Java虚拟机死锁
sesame
javathreadoracle虚拟机jdbc
英文资料:
Thread Dump and Concurrency Locks
Thread dumps are very useful for diagnosing synchronization related problems such as deadlocks on object monitors. Ctrl-\ on Solaris/Linux or Ctrl-B
- 位运算简介及实用技巧(一):基础篇
tw_wangzhengquan
位运算
http://www.matrix67.com/blog/archives/263
去年年底写的关于位运算的日志是这个Blog里少数大受欢迎的文章之一,很多人都希望我能不断完善那篇文章。后来我看到了不少其它的资料,学习到了更多关于位运算的知识,有了重新整理位运算技巧的想法。从今天起我就开始写这一系列位运算讲解文章,与其说是原来那篇文章的follow-up,不如说是一个r
- jsearch的索引文件结构
yangshangchuan
搜索引擎jsearch全文检索信息检索word分词
jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。
jsearch的索引文件结构定义如下:
1、一个词的索引由=分割的三部分组成: 第一部分是词 第二部分是这个词在多少