function [presim ss net] = simnonlin( y,d,n )
% y-- 时间序列数据,列向量
% d-- 时间延迟参数,正整数
% n--用于训练的点的个数,正整数
trainset = gettrain(y,d);
inputs = trainset(:,1:end-1)';
targets = trainset(:,end)';
net = feedforwardnet(20,'trainscg');
% net = newff(inputs,targets,40);
% net = train(net,inputs,targets);
net=train(net,inputs,targets);
presim(1:d)=y(end-d+1:end);
for i = d+1:d + n
presim(i) = sim(net,presim(i-d:i-1)');
end
ss = presim(d+1:end)';
end
调用示例:
t=[1:100]';
y = exp(-0.1*t).*sin(t);
d=10;
n=80;
sim = simnonlin( y,d,n );
谷歌人工智能写作项目:小发猫
1.注意细节
注意细节,一定要注意细节,代码是一个逻辑性极强的活儿,只有当每行代码逻辑都成立时,才能生效,否则就是报错,而且一定要从报错信息中找出些什么!
在这里插入图片描述
我在使用某个训练好的模型进行预测时,发现f1值特别的差,但代码都是完好的啊,怎么就有问题呢?后来经过查找才知道原来是shell脚本中的加载模型的那行参数没有生效,如下图所示:
在这里插入图片描述
就导致预测效果极差神经网络代码及数据。
其实这个问题也在上面的日志中体现出来了: run1.sh: 15: --init_chechpoint: not found,但是我却鲁莽地直接忽视了这个报错,却去查找代码的问题,简直可笑!
2 类设计
训练集,验证集,测试集三者的任务都是不同的,你是否想好它们的数据集是否共用同一个Dataset?还是为不同的数据集提供一个实现?
2.1 训练集
需要label,用于计算损失
2.2 验证集
需要label,可视化最后的损失情况
如果是一个NER问题,则需要原文本信息,因为需要可视化最后抽取出来的具体是什么数据。
…
2.3 测试集
没有label
如果是一个NER问题,那么仍然需要原文本信息
经过上面这些分析,就可以知道这些数据集包含的数据项是不完全相同的。
3 方法设计
是将一个方法设计的复杂,还是共用同一个方法?
这也是需要回答的问题
不要在模型中计算loss,而应该在train()函数中计算loss。但无论如何,请确保在evaluate的时候,模型的logtis是可以被传递回来的。
通常在验证模型时,也需要打出loss 和 f1 值,因为你需要查看验证集loss的情况,f1值那是更自然的需求了。
最好把参数全写成配置参数,这样launch.json 和shell 脚本就不会因为参数而冲突了
参数调整后,要跑整个模型时,请用shell脚本运行,而不是在vscode中用调试窗口跑。因为这样无法方便你对其它的代码调试,从而耽误进度。
用matlab求预测一组数据的bp神经网络模型,可以分
1、给定已经数据,作为一个原始序列;
2、设定自回归阶数,一般2~3,太高不一定好;
3、设定预测某一时间段
4、设定预测步数
5、用BP自定义函数进行预测
6、根据预测值,用plot函数绘制预测数据走势图
其主要实现代码如下:
clc
% x为原始序列(行向量)
x=[208.72 205.69 231.5 242.78 235.64 218.41];
%x=[101.4 101.4 101.9 102.4 101.9 102.9];
%x=[140 137 112 125 213 437.43];
t=1:length(x);
% 自回归阶数
lag=3;
%预测某一时间段
t1=t(end)+1:t(end)+5;
%预测步数为fn
fn=length(t1);
[f_out,iinput]=BP(x,lag,fn);
P=vpa(f_out,5);
A=[t1' P'];
disp('预测值')
disp(A)
% 画出预测图
figure(1),plot(t,iinput,'bo-'),hold on
plot(t(end):t1(end),[iinput(end),f_out],'rp-'),grid on
title('BP神经网络预测某地铁线路客流量')
xlabel('月号'),ylabel('客流量(百万)');
运行结果:
输入节点数为3x3x5=45,输出节点数为3x3+2=11,隐节点数通过试凑法得出。
BP神经网络的Matlab代码见附件,修改节点数、增加归一化和反归一化过程即可。
BP算法,误差反向传播(Error Back Propagation, BP)算法。BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。由于多层前馈网络的训练经常采用误差反向传播算法,人们也常把将多层前馈网络直接称为BP网络。
1)正向传播:输入样本->输入层->各隐层(处理)->输出层
注1:若输出层实际输出与期望输出(教师信号)不符,则转入2)(误差反向传播过程)
2)误差反向传播:输出误差(某种形式)->隐层(逐层)->输入层
其主要目的是通过将输出误差反传,将误差分摊给各层所有单元,从而获得各层单元的误差信号,进而修正各单元的权值(其过程,是一个权值调整的过程)。
注2:权值调整的过程,也就是网络的学习训练过程(学习也就是这么的由来,权值调整)。
你这是在做时间序列呢。
你可以去《神经网络之家》nnetinfo----》学习教程二--->神经网络在时间序列上的应用
上面有讲解。我把代码摘抄给你
% time series:神经网络在时间序列上的应用
% 本代码出自《神经网络之家》
timeList = 0 :0.01 : 2*pi; %生成时间点
X = sin(timeList); %生成时间序列信号
%利用x(t-5),x(t-4),x(t-3),x(t-2),x(t-1)作为输入预测x(t),将x(t)作为输出数据
inputData = [X(1:end-5);X(2:end-4);X(3:end-3);X(4:end-2);X(5:end-1)];
outputData = X(6:end);
%使用用输入输出数据(inputData、outputData)建立网络,
%隐节点个数设为3.其中隐层、输出层的传递函数分别为tansig和purelin,使用trainlm方法训练。
net = newff(inputData,outputData,3,{'tansig','purelin'},'trainlm');
%设置一些常用参数
net.trainparam.goal = 0.0001; %训练目标:均方误差低于0.0001
net.trainparam.show = 400; %每训练400次展示一次结果
net.trainparam.epochs = 1500; %最大训练次数:15000.
[net,tr] = train(net,inputData,outputData);%调用matlab神经网络工具箱自带的train函数训练网络
simout = sim(net,inputData); %调用matlab神经网络工具箱自带的sim函数得到网络的预测值
figure; %新建画图窗口窗口
t=1:length(simout);
plot(t,outputData,t,simout,'r')%画图,对比原来的输出和网络预测的输出
%------------------附加:抽取数学表达式----------------------------top
%希望脱离matlab的sim函数来使用训练好网络的话,可以抽取出数学的表达式,|
%这样在任何软件中,只需要按表达式计算即可。 |
%============抽取数学表达式==================
%抽取出网络的权值和阈值
w12 = net.iw{1,1}; %第1层(输入层)到第2层(隐层)的权值
b2 = net.b{1}; %第2层(隐层)的阈值
w23 = net.lw{2,1}; %第2层(隐层)到第3层(输出层)的权值
b3 = net.b{2}; %第3层(输出层)的阈值
%由于有归一化,必须先将归一化信息抓取出来
iMax = max(inputData,[],2);
iMin = min(inputData,[],2);
oMax = max(outputData,[],2);
oMin = min(outputData,[],2);
%方法1:归一化--->计算输出--->反归一化
normInputData=2*(inputData -repmat(iMin,1,size(inputData,2)))./repmat(iMax-iMin,1,size(inputData,2)) -1;
tmp = w23*tansig( w12 *normInputData + repmat(b2,1,size(normInputData,2))) + repmat(b3,1,size(normInputData,2));
myY = (tmp+1).*repmat(oMax-oMin,1,size(outputData,2))./2 + repmat(oMin,1,size(outputData,2));
%方法2:用真正的权值和阈值进行计算
%公式请参考《提取对应原始数据的权重和阈值》
W12 = w12 * 2 ./repmat(iMax' -iMin',size(w12,1),1);
B2 = -w12* (2*iMin ./(iMax - iMin) + 1) + b2;
W23 = w23 .*repmat((oMax -oMin),1,size(w23,2))/2;
B3 = (oMax -oMin) .*b3 /2 + (oMax -oMin)/2 + oMin;
%最终的数学表达式:
myY2 = W23 *tansig( W12 *inputData + repmat(B2,1,size(inputData,2))) + repmat(B3,1,size(inputData,2));
下列代码为BP神经网络预测37-56周的销售量的代码:
% x为原始序列
load 销售量.mat
data=C
x=data';
t=1:length(x);
lag=2;
fn=length(t);
[f_out,iinput]=BP(x,lag,fn);
%预测年份或某一时间段
t1=fn:fn+20;
n=length(t1);
t1=length(x)+1:length(x)+n;
%预测步数为fn
fn=length(t1);
[f_out,iinput]=BP(x,lag,fn);
P=vpa(f_out,5);
[t1' P']
% 画出预测图
figure(6),plot(t,x,'b*-'),hold on
plot(t(end):t1(end),[iinput(end),f_out],'rp-'),grid on
xlabel('周数'),ylabel('销售量');
str=['BP神经网络预测',num2str(length(x)+1),'-',num2str(length(x)+20),'周的销售量'];
title(str)
str1=['1-',num2str(length(x)),'周的销售量'];
str2=[num2str(length(x)+1),'-',num2str(length(x)+20),'周的预测销售量'];
legend(str1,str2)
运行结果
clc;
clearall;
closeall;
%%----BuildatrainingsetofasimilarversionofXOR
c_1=[00];
c_2=[11];
c_3=[01];
c_4=[10];
n_L1=20;%numberoflabel1
n_L2=20;%numberoflabel2
A=zeros(n_L1*2,3);
A(:,3)=1;
B=zeros(n_L2*2,3);
B(:,3)=0;
%createrandompoints
fori=1:n_L1
A(i,1:2)=c_1+rand(1,2)/2;
A(i+n_L1,1:2)=c_2+rand(1,2)/2;
end
fori=1:n_L2
B(i,1:2)=c_3+rand(1,2)/2;
B(i+n_L2,1:2)=c_4+rand(1,2)/2;
end
%showpoints
scatter(A(:,1),A(:,2),[],'r');
holdon
scatter(B(:,1),B(:,2),[],'g');
X=[A;B];
data=X(:,1:2);
label=X(:,3);
%%Usingkmeanstofindcintervector
n_center_vec=10;
rng(1);
[idx,C]=kmeans(data,n_center_vec);
holdon
scatter(C(:,1),C(:,2),'b','LineWidth',2);
%%Calulatesigma
n_data=size(X,1);
%calculateK
K=zeros(n_center_vec,1);
fori=1:n_center_vec
K(i)=numel(find(idx==i));
end
%UsingknnsearchtofindKnearestneighborpointsforeachcentervector
%thencalucatesigma
sigma=zeros(n_center_vec,1);
fori=1:n_center_vec
[n,d]=knnsearch(data,C(i,:),'k',K(i));
L2=(bsxfun(@minus,data(n,:),C(i,:)).^2);
L2=sum(L2(:));
sigma(i)=sqrt(1/K(i)*L2);
end
%%Calutateweights
%kernelmatrix
k_mat=zeros(n_data,n_center_vec);
fori=1:n_center_vec
r=bsxfun(@minus,data,C(i,:)).^2;
r=sum(r,2);
k_mat(:,i)=exp((-r.^2)/(2*sigma(i)^2));
end
W=pinv(k_mat'*k_mat)*k_mat'*label;
y=k_mat*W;
%y(y>=0.5)=1;
%y(y<0.5)=0;
%%trainingfunctionandpredictfunction
[W1,sigma1,C1]=RBF_training(data,label,10);
y1=RBF_predict(data,W,sigma,C1);
[W2,sigma2,C2]=lazyRBF_training(data,label,2);
y2=RBF_predict(data,W2,sigma2,C2);
扩展资料
matlab的特点
1、具有完备的图形处理功能,实现计算结果和编程的可视化;
2、友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;
3、功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。
参考资料来源: