《PyTorch深度学习实践》Lecture_09 多分类问题 Softmax Classifier

B站刘二大人老师的《PyTorch深度学习实践》Lecture_09 重点回顾+代码复现

Lecture_09 多分类问题 Softmax Classifier

一、重点回顾

(一)Softmax Layer

通过softmax层,使得各项输出>0,且和为1。
softmax层的计算如下:
《PyTorch深度学习实践》Lecture_09 多分类问题 Softmax Classifier_第1张图片
举个例子:
《PyTorch深度学习实践》Lecture_09 多分类问题 Softmax Classifier_第2张图片

(二)Loss Function - Cross Entropy

《PyTorch深度学习实践》Lecture_09 多分类问题 Softmax Classifier_第3张图片
Cross Entropy in Numpy:

import numpy as np 
y = np.array([1,0,0])
z = np.array([0.2,0.1,-0.1])
y_pred = np.exp(z)/np.exp(z).sum()
loss = (-y*np.log(y_pred)).sum()
print(loss)

《PyTorch深度学习实践》Lecture_09 多分类问题 Softmax Classifier_第4张图片
Cross Entropy in PyTorch:

import torch
y = torch.LongTensor([0])
z = torch.Tensor([[0.2,0.1,-0.1]])
criterion = torch.nn.CrossEntropyLoss()
loss = criterion(z,y)
print(loss)

这里不需要再加激活函数!!!

CrossEntropyLoss vs NLLLoss

torch.nn.CrossEntropyLoss

This criterion combines nn.LogSoftmax() and nn.NLLLoss() in one single class.

torch.nn.NLLLoss

(三)MNIST Dataset

手写数字集,每个图象为28*28=784个像素。

进行神经网络训练时,希望的数据在0到1之间,并且符合正态分布,所以需要将数据集进行以下转变:

transform = transforms.Compose([
	transforms.ToTensor(), # Convert the PIL Image to Tensor
	transforms.Normalize((0.1307,),(0.3081,)) # 均值和标准差
])

《PyTorch深度学习实践》Lecture_09 多分类问题 Softmax Classifier_第5张图片

二、代码复现

# Import Package
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F 
import torch.optim as optim

# Prepare Dataset
batch_size = 64
transform = transforms.Compose([
	transforms.ToTensor(), # Convert the PIL Image to Tensor
	transforms.Normalize((0.1307,),(0.3081,))
])

train_dataset = datasets.MNIST(root='./dataset/mnist/',train=True,download=True,transform=transform)
train_loader = DataLoader(train_dataset,shuffle=True,batch_size=batch_size)
test_dataset = datasets.MNIST(root='./dataset/mnist/',train=False,download=True,transform=transform)
test_loader = DataLoader(train_dataset,shuffle=False,batch_size=batch_size)

# Design Model
class Net(torch.nn.Module):
	"""docstring for Net"""
	def __init__(self):
		super(Net, self).__init__()
		self.l1 = torch.nn.Linear(784,512)
		self.l2 = torch.nn.Linear(512,256)
		self.l3 = torch.nn.Linear(256,128)
		self.l4 = torch.nn.Linear(128,64)
		self.l5 = torch.nn.Linear(64,10)
		# 全连接神经网络
	def forward(self,x):
		x = x.view(-1,784) # 需要将图像展平处理
		x = F.relu(self.l1(x))
		x = F.relu(self.l2(x))
		x = F.relu(self.l3(x))
		x = F.relu(self.l4(x))
		return self.l5(x) # 最后一层不需要激活

model = Net()

# Construct Loss and Optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),lr=0.01,momentum=0.5)

# Train and Test
def train(epoch):
	running_loss = 0.0
	for batch_idx,data in enumerate(train_loader,0):
		inputs,target = data
		optimizer.zero_grad()

		outputs = model(inputs)
		loss = criterion(outputs,target)
		loss.backward()
		optimizer.step()

		running_loss += loss.item()
		if batch_idx % 300 == 299:
			print('[%d,%5d] loss:%.3f' % (epoch+1,batch_idx+1,running_loss/300))
			running_loss = 0.0

def test():
	correct = 0
	total = 0
	with torch.no_grad():
		for data in test_loader:
			images,labels = data
			outputs = model(images)
			_,predicted = torch.max(outputs.data,dim=1)
			total += labels.size(0)
			correct += (predicted==labels).sum().item()
	print('Accuracy on test set: %d %%' % (100*correct/total))

if __name__ == '__main__':
	for epoch in range(10):
		train(epoch)
		test()

如果下载数据集的时候很慢,找个网速好的地方就好了~

运行结果:
《PyTorch深度学习实践》Lecture_09 多分类问题 Softmax Classifier_第6张图片

你可能感兴趣的:(PyTorch深度学习,深度学习,神经网络,pytorch)