函数求导简介

求导公式

( x n ) ′ = n x n − 1 (x^n)'=nx^{n-1} (xn)=nxn1
( e x ) ′ = e x (e^x)'=e^x (ex)=ex
( ln ⁡ x ) ′ = 1 x (\ln x)'=\dfrac 1x (lnx)=x1
( a x ) = a x ln ⁡ a (a^x)=a^x\ln a (ax)=axlna
( l o g a x ) ′ = 1 x ln ⁡ a (log_ax)'=\dfrac{1}{x \ln a} (logax)=xlna1


( sin ⁡ x ) ′ = cos ⁡ x (\sin x)'=\cos x (sinx)=cosx
( cos ⁡ x ) ′ = sin ⁡ x (\cos x)'=\sin x (cosx)=sinx
( tan ⁡ x ) ′ = sec ⁡ 2 x (\tan x)'=\sec^2 x (tanx)=sec2x
( cot ⁡ x ) ′ = − csc ⁡ 2 x (\cot x)'=-\csc^2 x (cotx)=csc2x
( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x (\sec x)'=\sec x\tan x (secx)=secxtanx
( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x (\csc x)'=-\csc x\cot x (cscx)=cscxcotx


( arcsin ⁡ x ) ′ = 1 1 − x 2 (\arcsin x)'=\dfrac{1}{\sqrt{1-x^2}} (arcsinx)=1x2 1

( arccos ⁡ x ) ′ = − 1 1 − x 2 (\arccos x)'=-\dfrac{1}{\sqrt{1-x^2}} (arccosx)=1x2 1

( arctan ⁡ x ) ′ = 1 1 + x 2 (\arctan x)'=\dfrac{1}{1+x^2} (arctanx)=1+x21

( arccot  x ) ′ = − 1 1 + x 2 (\text{arccot} \ x)'=-\dfrac{1}{1+x^2} (arccot x)=1+x21

有关三角函数

sin ⁡ x csc ⁡ x = 1 \sin x\csc x=1 sinxcscx=1
cos ⁡ x sec ⁡ x = 1 \cos x\sec x=1 cosxsecx=1
tan ⁡ x cot ⁡ x = 1 \tan x\cot x=1 tanxcotx=1

求导法则

[ f ( x ) ± g ( x ) ] ′ = f ′ ( x ) ± g ′ ( x ) [f(x)\pm g(x)]'=f'(x)\pm g'(x) [f(x)±g(x)]=f(x)±g(x)

[ f ( x ) ⋅ g ( x ) ] ′ = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) [f(x)\cdot g(x)]'=f'(x)g(x)+f(x)g'(x) [f(x)g(x)]=f(x)g(x)+f(x)g(x)

[ f ( x ) g ( x ) ] ′ = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) g 2 ( x ) [\dfrac{f(x)}{g(x)}]'=\dfrac{f'(x)g(x)-f(x)g'(x)}{g^2(x)} [g(x)f(x)]=g2(x)f(x)g(x)f(x)g(x)

你可能感兴趣的:(数学,数学)