finetune一个cnn网络实现详细步骤,分为以下7步。
提示:以下是本篇文章正文内容,下面案例可供参考
代码如下(示例):
import torch
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import numpy as np
import os
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import sys
sys.path.append("..")
from utils.utils import MyDataset, validate, show_confMat
from datetime import datetime
代码如下(示例):
train_txt_path = os.path.join("..", "..", "Data", "train.txt")
valid_txt_path = os.path.join("..", "..", "Data", "valid.txt")
classes_name = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
train_bs = 16
valid_bs = 16
lr_init = 0.001
max_epoch = 1
# log
result_dir = os.path.join("..", "..", "Result")
now_time = datetime.now()
time_str = datetime.strftime(now_time, '%m-%d_%H-%M-%S')
log_dir = os.path.join(result_dir, time_str)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
# 数据预处理设置
normMean = [0.4948052, 0.48568845, 0.44682974]
normStd = [0.24580306, 0.24236229, 0.2603115]
normTransform = transforms.Normalize(normMean, normStd)
trainTransform = transforms.Compose([
transforms.Resize(32),
transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
normTransform
])
validTransform = transforms.Compose([
transforms.ToTensor(),
normTransform
])
train_data = MyDataset(txt_path=train_txt_path, transform=trainTransform)
valid_data = MyDataset(txt_path=valid_txt_path, transform=validTransform)
train_loader = DataLoader(dataset=train_data, batch_size=train_bs, shuffle=True)
valid_loader = DataLoader(dataset=valid_data, batch_size=valid_bs)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool1 = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.pool2 = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool1(F.relu(self.conv1(x)))
x = self.pool2(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义权值初始化
def initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
torch.nn.init.xavier_normal_(m.weight.data)
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
torch.nn.init.normal_(m.weight.data, 0, 0.01)
m.bias.data.zero_()
net = Net() # 创建一个网络
# ================================ #
# finetune 权值初始化
# ================================ #
# load params
pretrained_dict = torch.load('net_params.pkl')
# 获取当前网络的dict
net_state_dict = net.state_dict()
# 剔除不匹配的权值参数
pretrained_dict_1 = {k: v for k, v in pretrained_dict.items() if k in net_state_dict}
# 更新新模型参数字典
net_state_dict.update(pretrained_dict_1)
# 将包含预训练模型参数的字典"放"到新模型中
net.load_state_dict(net_state_dict)
# ================================= #
# 按需设置学习率
# ================================= #
# 将fc3层的参数从原始网络参数中剔除
ignored_params = list(map(id, net.fc3.parameters()))
base_params = filter(lambda p: id(p) not in ignored_params, net.parameters())
# 为fc3层设置需要的学习率
optimizer = optim.SGD([
{'params': base_params},
{'params': net.fc3.parameters(), 'lr': lr_init*10}], lr_init, momentum=0.9, weight_decay=1e-4)
criterion = nn.CrossEntropyLoss() # 选择损失函数
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.1) # 设置学习率下降策略
for epoch in range(max_epoch):
loss_sigma = 0.0 # 记录一个epoch的loss之和
correct = 0.0
total = 0.0
scheduler.step() # 更新学习率
for i, data in enumerate(train_loader):
# 获取图片和标签
inputs, labels = data
inputs, labels = Variable(inputs), Variable(labels)
# forward, backward, update weights
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 统计预测信息
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).squeeze().sum().numpy()
loss_sigma += loss.item()
# 每10个iteration 打印一次训练信息,loss为10个iteration的平均
if i % 10 == 9:
loss_avg = loss_sigma / 10
loss_sigma = 0.0
print("Training: Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
epoch + 1, max_epoch, i + 1, len(train_loader), loss_avg, correct / total))
print('参数组1的学习率:{}, 参数组2的学习率:{}'.format(scheduler.get_lr()[0], scheduler.get_lr()[1]))
# ------------------------------------ 观察模型在验证集上的表现 ------------------------------------
loss_sigma = 0.0
cls_num = len(classes_name)
conf_mat = np.zeros([cls_num, cls_num]) # 混淆矩阵
net.eval()
for i, data in enumerate(valid_loader):
# 获取图片和标签
images, labels = data
images, labels = Variable(images), Variable(labels)
# forward
outputs = net(images)
outputs.detach_()
# 计算loss
loss = criterion(outputs, labels)
loss_sigma += loss.item()
# 统计
_, predicted = torch.max(outputs.data, 1)
# labels = labels.data # Variable --> tensor
# 统计混淆矩阵
for j in range(len(labels)):
cate_i = labels[j].numpy()
pre_i = predicted[j].numpy()
conf_mat[cate_i, pre_i] += 1.0
print('{} set Accuracy:{:.2%}'.format('Valid', conf_mat.trace() / conf_mat.sum()))
print('Finished Training')
conf_mat_train, train_acc = validate(net, train_loader, 'train', classes_name)
conf_mat_valid, valid_acc = validate(net, valid_loader, 'valid', classes_name)
show_confMat(conf_mat_train, classes_name, 'train', log_dir)
show_confMat(conf_mat_valid, classes_name, 'valid', log_dir)
# coding: utf-8
import torch
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import numpy as np
import os
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import sys
sys.path.append("..")
from utils.utils import MyDataset, validate, show_confMat
from datetime import datetime
train_txt_path = os.path.join("..", "..", "Data", "train.txt")
valid_txt_path = os.path.join("..", "..", "Data", "valid.txt")
classes_name = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
train_bs = 16
valid_bs = 16
lr_init = 0.001
max_epoch = 1
# log
result_dir = os.path.join("..", "..", "Result")
now_time = datetime.now()
time_str = datetime.strftime(now_time, '%m-%d_%H-%M-%S')
log_dir = os.path.join(result_dir, time_str)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
# -------------------------------------------- step 1/5 : 加载数据 -------------------------------------------
# 数据预处理设置
normMean = [0.4948052, 0.48568845, 0.44682974]
normStd = [0.24580306, 0.24236229, 0.2603115]
normTransform = transforms.Normalize(normMean, normStd)
trainTransform = transforms.Compose([
transforms.Resize(32),
transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
normTransform
])
validTransform = transforms.Compose([
transforms.ToTensor(),
normTransform
])
# 构建MyDataset实例
train_data = MyDataset(txt_path=train_txt_path, transform=trainTransform)
valid_data = MyDataset(txt_path=valid_txt_path, transform=validTransform)
# 构建DataLoder
train_loader = DataLoader(dataset=train_data, batch_size=train_bs, shuffle=True)
valid_loader = DataLoader(dataset=valid_data, batch_size=valid_bs)
# ------------------------------------ step 2/5 : 定义网络 ------------------------------------
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool1 = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.pool2 = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool1(F.relu(self.conv1(x)))
x = self.pool2(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义权值初始化
def initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
torch.nn.init.xavier_normal_(m.weight.data)
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
torch.nn.init.normal_(m.weight.data, 0, 0.01)
m.bias.data.zero_()
net = Net() # 创建一个网络
# ================================ #
# finetune 权值初始化
# ================================ #
# load params
pretrained_dict = torch.load('net_params.pkl')
# 获取当前网络的dict
net_state_dict = net.state_dict()
# 剔除不匹配的权值参数
pretrained_dict_1 = {k: v for k, v in pretrained_dict.items() if k in net_state_dict}
# 更新新模型参数字典
net_state_dict.update(pretrained_dict_1)
# 将包含预训练模型参数的字典"放"到新模型中
net.load_state_dict(net_state_dict)
# ------------------------------------ step 3/5 : 定义损失函数和优化器 ------------------------------------
# ================================= #
# 按需设置学习率
# ================================= #
# 将fc3层的参数从原始网络参数中剔除
ignored_params = list(map(id, net.fc3.parameters()))
base_params = filter(lambda p: id(p) not in ignored_params, net.parameters())
# 为fc3层设置需要的学习率
optimizer = optim.SGD([
{'params': base_params},
{'params': net.fc3.parameters(), 'lr': lr_init*10}], lr_init, momentum=0.9, weight_decay=1e-4)
criterion = nn.CrossEntropyLoss() # 选择损失函数
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.1) # 设置学习率下降策略
# ------------------------------------ step 4/5 : 训练 --------------------------------------------------
for epoch in range(max_epoch):
loss_sigma = 0.0 # 记录一个epoch的loss之和
correct = 0.0
total = 0.0
scheduler.step() # 更新学习率
for i, data in enumerate(train_loader):
# 获取图片和标签
inputs, labels = data
inputs, labels = Variable(inputs), Variable(labels)
# forward, backward, update weights
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 统计预测信息
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).squeeze().sum().numpy()
loss_sigma += loss.item()
# 每10个iteration 打印一次训练信息,loss为10个iteration的平均
if i % 10 == 9:
loss_avg = loss_sigma / 10
loss_sigma = 0.0
print("Training: Epoch[{:0>3}/{:0>3}] Iteration[{:0>3}/{:0>3}] Loss: {:.4f} Acc:{:.2%}".format(
epoch + 1, max_epoch, i + 1, len(train_loader), loss_avg, correct / total))
print('参数组1的学习率:{}, 参数组2的学习率:{}'.format(scheduler.get_lr()[0], scheduler.get_lr()[1]))
# ------------------------------------ 观察模型在验证集上的表现 ------------------------------------
loss_sigma = 0.0
cls_num = len(classes_name)
conf_mat = np.zeros([cls_num, cls_num]) # 混淆矩阵
net.eval()
for i, data in enumerate(valid_loader):
# 获取图片和标签
images, labels = data
images, labels = Variable(images), Variable(labels)
# forward
outputs = net(images)
outputs.detach_()
# 计算loss
loss = criterion(outputs, labels)
loss_sigma += loss.item()
# 统计
_, predicted = torch.max(outputs.data, 1)
# labels = labels.data # Variable --> tensor
# 统计混淆矩阵
for j in range(len(labels)):
cate_i = labels[j].numpy()
pre_i = predicted[j].numpy()
conf_mat[cate_i, pre_i] += 1.0
print('{} set Accuracy:{:.2%}'.format('Valid', conf_mat.trace() / conf_mat.sum()))
print('Finished Training')
# ------------------------------------ step5: 绘制混淆矩阵图 ------------------------------------
conf_mat_train, train_acc = validate(net, train_loader, 'train', classes_name)
conf_mat_valid, valid_acc = validate(net, valid_loader, 'valid', classes_name)
show_confMat(conf_mat_train, classes_name, 'train', log_dir)
show_confMat(conf_mat_valid, classes_name, 'valid', log_dir)
以上就是今天要讲的内容,本文仅仅简单介绍finetune一个cnn网络实现详细步骤及源码,可直接使用,仅供学习参考!